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Chapter 1

Principles of stellar structure theory

The canonical theory of stellar structure and evolution assumes spherical symmetry (i.e. the absence
of rotation and magnetic fields) and hydrostatic equilibrium. Under these assumptions a star can be
described by the run of four structure variables – r, T , P , Lr – with the Lagrangian coordinate m.
We will derive the corresponding four partial differential equations. From the discussion of those several
important aspects of stellar structure can be derived, such as timescales, estimates for typical solar values
and homology relations.
This first lecture will provide the student with an overview of the physics important for most stars. It is
oriented closely at the following excellent text books:

• Kippenhahn R. & Weigert A.: Stellar structure and evolution, Springer, 1990 (hereafter abbreviated
by KW)

• Hansen C.J. & Kawaler S.D.: Stellar interiors, Springer, 1994 (hereafter abbreviated by HK)

In the second lecture the missing micro-physics will be discussed. These are nuclear reaction rates, plasma
neutrino emission, opacity sources and equation of state. Each topic will consist of fundamental processes
and considerations and up-to-date data used.
Finally, an overview of numerical methods used to solve the complete problem will be given.
For this lecture, in addition of the two textbooks, the following literature contains very instructive
material:

• Schwarzschild M.: Structure and evolution of the stars, Dover, 1965

• Clayton D.D.: Principles of stellar evolution and nucleosynthesis, Univ. of Chicago Press, 1983

• Kippenhahn, Weigert, Hofmeister: Methods in Computational Physics, vol. 7, 129 (1967); the
original paper about the standard numerical method; a description is also contained in the KW
textbook

• de Loore B., Doom, C.: Structure and Evolution of Single and Binary Stars, Kluwer, 1992, contains
a basic introduction and a discussion about alternative numerical methods (hereafter abbreviated
by dLD)

4



1.1. SOME OBSERVATIONAL FACTS 5

1.1 Some observational facts

Stars appear as white point-like objects in the night sky. You see them through the filter of your eye.
Astronomical observations make use of several broad-band filters to measure the flux of a star in different
wavelength-bands. (This is called photometry; a much better way is spectroscopy, but this needs bright
objects.) There are several filter systems, the best-known is the UBV system. The V (for visual; filter is
similar to the human eye).

Illustration of the UBV-filter response functions (from Clayton, 1983)

Measuring the flux in several bands allows to draw conclusions about the stellar temperature. Stars are,
as known from the Sun, almost perfect Black Body radiators, whose spectrum is characterized by its
temperature T only. Measurements at two wavelengths, therefore, provide T , even if the distance – and
thus the total flux – is not known.

Iλ =
2c2h

λ5
exp

(
hc

λkT
− 1

)−1 ( erg
cm3s

)
(1.1)

πF =
∫ ∞

0

dλIλ = σT 4
( erg

cm2s

)
(1.2)

2π5k4

15c2h3
=

ac

4
= σ = 5.67 · 10−5 erg

cm2 s K4
(1.3)

Photometric observations of interest for this lecture yield

• V ≡ Mv : brightness

• B − V : colour (temperature)

• (sometimes V − I)
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Luminosity, magnitudes, etc.:

In the case of the Sun, if F :=
∫

Fλdλ is the net flux at all wavelenghts through a sphere at the solar
radius R�, we define

L� = 4R2
�(πF ) (1.4)

as the solar luminosity. The flux on earth, S = 1.36 · 106 erg
cm2s (called the solar constant) relates to F as

S = F (πR2�/d2), which gives F = 2 · 1010 and

L� = 3.82 · 1033erg/s

and therefore, with

L� = 4πσR2
�T 4

eff (1.5)
Teff = 5770 K. (1.6)

L, Teff , mass M (or g, R) are the basic global stellar parameters.

In the Hertzsprung-Russell-Diagram (HRD), L is plotted against Teff (decreasing to right). The
observational counterpart is the Colour-Magnitude-Diagram (CMD), which shows V vs. (B − V )
(more general: brightness vs. colour index).
Magnitudes are a historical, unreasonable measure of stellar brightness in a log L-system.

m2 − m1 = 2.5 log b1/b2 (1.7)

(b stands here for the measured apparent brightness, which depends on collector area, response function
and flux). Five magnitudes (or classes) correspond to a factor of 100 in L. Lowercase m denote apparent
magnitudes, i.e. the distance difference is included as well. Smaller m = higher b (brightness).
Absolute magnitude M is defined as

M − m ≡ 5 − 5 log d (1.8)

where d is the distance in parsec (3.08 · 1018 cm); M correponds to the brightness at 10 pc. m − M is
also called distance modulus; 0.2(m − M) + 1 = log d.
Magnitudes measured in a wavelength band are denoted by their indices, e.g. MV or mB. If the total
or bolometric luminosity or brightness is meant, it is Mb. The difference to MV is called the bolometric
correction B.C., which includes all energy emitted at frequencies outside the filter range.
For the sun, at d = 10 pc, Mb = 4.72 and therefore

Mb = −2.5 log
L

L�
+ 4.72 (1.9)

A further convention is that for a star of spectral class A0 V (e.g. α Lyr = Vega), MV = MB = MU .
This defines the bolometric corrections for U and B bands.
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We now have a first look at an observed CMD:

            

The Hertzsprung-Russel-Diagram of nearby stars (from dLD)

The aim of stellar structure theory is to understand the structure of such diagrams (and other observa-
tional results) and to derive more information about the stars from the basic photometric (spectroscopic)
data.
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1.2 The structure equations

1.2.1 Basic assumptions

Stars are considered as self-gravitating objects of hot plasma, emitting energy in the form of photons
from the surface. In the absence of forces such as rotation and magnetic fields, spherical symmetry holds
(only gravity and isotropic pressure are at work) and we have a one-dimensional problem to solve with
radius r being the natural coordinate (Euler description).

1.2.2 Mass and radius

In Eulerian description, the mass dm contained in a shell at radius r and of thickness dr is

dm = 4πr2ρdr − 4πr2ρvdt

because

∂m

∂r
= 4πr2ρ

and

∂m

∂t
= −4πr2vρ

If we take the derivative of both equations with respect to the resp. other argument, we obtain

∂ρ

∂t
= −r−2 ∂(ρr2v)

∂r

or

∂ρ

∂t
= −∇(ρv)

which is the continuity equation in 1-dimensional form and Eulerian description.
In Lagrangian description, we consider mass elements m (this is the mass contained in a concentric shell;
also called Mr).

⇒ r = r(m, t)

Perform a variable change (r, t) → (m, t):

∂

∂m
=

∂

∂r

∂r

∂m

and (
∂

∂t

)
m

=
∂

∂r

(
∂r

∂t

)
m

+
(

∂

∂t

)
r

The first equation, when applied to m (l.h.s. = 1), gives on the r.h.s. from the first factor 4πr2ρ and this
allows to solve for ∂r

∂m in Lagrangian coordinates:

∂r

∂m
=

1
4πr2ρ

(1.10)
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This equation is our first structure equation, sometimes called the mass equation or mass conservation.
It contains in general the recipe for the transformation between the two descriptions:

∂

∂m
=

1
4πr2ρ

∂

∂r
(1.11)

Note that in this description, the l.h.s. of the second transformation formula contains the so-called
“substantial time derivative” of hydrodynamics! It contains the complete change of some physical quantity
of element m. The Lagrangian description gives much simples equations than the Eulerian.

1.2.2.1 Gravity

Gravitational field

∇2Φ = 4πGρ

(G = 6.673 · 10−8 dyn cm2 g−2). In spherical symmetry:

1
r2

∂

∂r

(
r2 ∂Φ

∂r

)
= 4πGρ (1.12)

With g = ∂Φ
∂r we find that g = Gm

r2 is the solution of Poisson’s equation. Conventions are that g is
one-dimensional and pointing towards r = 0 and that the potential Φ vanishes for r → ∞. − ∫∞

0
Φdr is

the energy required to disperse the complete star to infinity.

1.2.3 Hydrostatic equilibrium

Consider again a spherical shell of thickness dr. On it two forces (per unit volume) are acting: gravity
−gρdr pointing towards the center and a pressure imbalance �P = −∂P

∂r �r. If the shell is supposed to
be at rest (hydrostatic equilibrium), the sum is 0 and we obtain:

∂P

∂r
= −Gm

r2
ρ

or, in Lagrangian coordinates:

∂P

∂m
= − Gm

4πr4
(1.13)

This is the second structure equation, that of hydrostatic equilibrium. Together with the mass equation,
these two mechanical equations allow already some simple estimates of stellar conditions.
Replace the derivatives in the hydrostatic equation by differences between center (Pc) and surface (P0 ≈ 0)
and you get

Pc ≈ 2GM2

πR4

where M and R are total mass and radius of the star (M/2 and R/2 were used on the r.h.s.).
For our Sun we obtain Pc = 7 · 1015 (cgs units).
Assume now an ideal gas equation of the form ρ = µP

RT , where R = 8.315 · 107 erg K−1 g−1 is the Gas
constant 1 and µ the mean molecular weight (defined later). We also define ρ̄ = (3M)/(4πR3) and get
for the central temperature

Tc =
8
3

µ

R
GM

R

ρ̄

ρc
< 3 · 107 K

1R relates to the Boltzmann constant kB through R = kBNA, NA being Avogadro’s number 6.022 · 1023.
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The last term is in general < 1, because stars tend to have more concentrated cores. We already see that
at the center of the Sun, T is of the order of 107 K and therefore nuclear reactions will take place there.

1.2.3.1 Motion

In case the mass layer is not at rest, the pressure equation becomes

∂P

∂m
+

Gm

4πr4
= − 1

4πr2

∂2r

∂t2

the last term being the interia term: the element is accelerated due to the net force resulting from gravity
and pressure not balancing each other.
If P = 0 everywhere, m will move in free-fall Gm/r2 = r̈. The timescale is τff =

√
R/|r̈| ≈ √

R/g. If
G = 0, |r̈| = R/τ2

expl; 4πr2 ∂P
∂m can be transformed into P/Rρ such that τexpl ≈ R

√
ρ/P .

√
P/ρ is the

isothermal sound speed and τexpl therefore the time needed for a sound wave to traverse the star.
If the star is near hydrostatic equilibrium, these two timescales must be about the same and are also
called hydrostatic timescale τhydro, which is

τhydro ≈ 1
2
(Gρ̄)−1/2

Examples: τhydro =

• 27 minutes for the Sun

• 18 days for a Red Giant (R = 100R�)

• 4.5 seconds for a White Dwarf (R = R�/50)

Conclusion: even if somehow perturbed, stars can return to hydrostatic equilibrium within an extremely
short time in most of their evolutionary phases.

1.2.3.2 The Virial Theorem

. . . describes the relation between global energy reservoirs of a star. It allows to understand evolutionary
phases and global behaviour of stars.
By integrating the hydrostatic equilibrium equation over dm, one derives easily (only assuming P (M) =
0):

∫ M

0

Gm

r
dm = 3

∫ M

0

P

ρ
, dm (1.14)

where the l.h.s. = −Eg (gravitational energy).
In case of a monatomic ideal gas, P/ρ = (2/3)u = (2/3)cvT (u: specific internal energy), and therefore
the r.h.s. corresponds to 2Ei =

∫
udm .

The virial theorem for such a gas therefore is

Eg = −2Ei (1.15)

For a general gas, 3(P/ρ) = ζu, with ζ = 3(γ − 1), which, for a monoatomic gas is 2 (γ = 5/3) and for a
photon gas 1. If ζ = const. throughout the star, the virial theorem reads

ζEi + Eg = 0.

In the case of non-vanishing surface pressure P0, the virial theorem becomes

ζEi + Eg = 4πR3P0. (1.16)
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The total energy is W = Ei + Eg = (1 − ζ)Ei = ζ−1
ζ Eg and the luminosity L corresponds to the change

of the total energy dW
dt or L = (ζ − 1)dEi

dt . For the standard case (ζ = 2) we obtain

L = − Ėg

2
= Ėi, (1.17)

which means that if the star contracts (Ėg < 0), half of the energy gained is radiated away, while the
other half is used to raise Ei (star is heated). Another interpretation is that since the star must radiate
(because it is hotter than the universe at large), at the same time it heats up and shrinks (although parts
– the envelope – might well and does expand, nevertheless). 2

1.2.3.3 The Kelvin-Helmholtz timescale

L ≈
∣∣∣dEg

dt

∣∣∣; define typical timescale

τKH =
|Eg|
L

≈ Ei

L
.

|Eg| ≈ GM2

2R
⇒ τKH ≈ GM2

2RL
.

For the Sun, τKH = 1.6 · 107 yrs (L� = 3.827 · 1033 erg s−1). This implies that the Sun could shine only
for about 10 million years, if the reactions at the center would be switched off. Stars evolve – in most
cases – on much longer timescales, because they have energy sources much larger than |Eg|.

The constant density model:

ideal monatomic gas:

u =
3
2

nkBT

ρ
=

3
2

NAkB

µ
T =

3
2

P

ρ
, (1.18)

(with Avogadro’s number NA = 6.022 ·1023 mole−1 and kB = 1.38 ·1016 erg/K, the Boltzmann constant).

Ei = uV = u
M

ρ̄
=

3
2
M

R
µ

T = −1
2
Eg = −1

2

(
−3

5
GM2

R

)

for a constant density model ρ = ρ̄.

⇒ T = 4.09 · 106µ
(

M
M�

)2/3

ρ1/3

If ρ = const., r = (m/M)1/3R; insert this into hydrostatic equilibrium equation to obtain

∂P

∂m
= − GM

4πR4

(
M

m

)1/3

.

Integration over M (P (M) = 0) yields P (m) = Pc

[
1 − (m/M)2/3

]
= Pc

[
1 − (r/R)2

]
and

Pc =
3
8

GM2

R4
= 1.34 · 1015

(
M

M�

)2(
R�
R

)4

and

T (m) = Tc

[
1 − (m/M)2/3

]

Tc = 1.15 · 107µ

(
M

M�

)(
R�
R

)

which is similar, but more exact than the previous estimate of the solar central temperature.
2Note: one can start with the total energy consideration, and search for equilibrium states; this returns the hydrostatic

equation (see Hansen & Kawaler)
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1.2.4 Energy conservation

Define Lr as the energy in (erg/s) passing outwards through a sphere of radius r; boundary conditions
are L(0) = 0 and L(M) = L(R) =: L. Lr includes energy transported by radiation, convection and
conduction, but not by neutrinos!
The energy gained (or lost) by a shell of thickness dm is

dLr = 4πr2ρεdm,

with ε in (erg/gs) being the specific energy generation rate.
Sources for ε are:

• in a stationary mass shell: ε = εn(ρ, T, �X) : nuclear energy generation, depending also on compo-
sition �X;

• in a non-stationary mass shell: interaction with surrounding via PdV (v := 1/ρ will be the specific
volume in the following).

(
εn − ∂Lr

∂m

)
dt = dq (1.19)

∂Lr

∂m
= εn − ∂u

∂t
− P

∂v

∂t

= εn − ∂u

∂t
+

P

ρ2

∂ρ

∂t

= εn − cP
∂T

∂t
+

δ

ρ

∂P

∂t
(1.20)

From dq = Tds, one defines the gravothermal energy

εg := −T
∂s

∂t
,

which, as shown in the appendix on thermodynamical relations is

εg = −cP
∂T

∂t
+

δ

ρ

∂P

∂t
= −cP T

(
1
T

∂T

∂t
− ∇ad

P

∂P

∂t

)
(1.21)

Finally, both in nuclear reactions and in plasma processes neutrinos are produced. Since their free
pathlength is so high that they do not interact with the stellar plasma, they are counted separately. In
nuclear reactions, the energy loss due to neutrinos is already taken into account in the effective energy
generation rate. The neutrinos from plasma processes, discussed later, are denoted by εν . With this the
energy conservation equation reads

∂Lr

∂m
= εn + εg − εν . (1.22)

Note the conventions: εν is positive for the energy of the neutrinos, therefore it is subtracted. εg is
positive for contraction, which liberates energy, raising Lr(m).

Note: Remember that we have assumed that the EOS and the internal energy do not depend on compo-
sition. If this is generalized, additional terms from the entropy change and from the chemical potential
changes appear in εg. However, in general, these corrections are unimportant for εg, which itself is usually
contributing only a minor fraction to L (Sun: 10−4). The correction is largest in nuclear burning regions,
but there εn dominates by many orders of magnitude. The correct (and complete) expression for εg is,
however, necessary for precise solar models. 3

3see Reiter, Walsh, Weiss: MNRAS 274, 899 (1995) and Reiter, Bulirsch, Pfleiderer: Astron. Nach. 315, 205 (1994)
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1.2.4.1 Energy conservation – again

The energy budget of a star is (in complete form)

Ẇ =
d
dt

(Ekin + Eg + Ei + En) = −(L + Lν),

which must result from the energy conservation equation by integration over dm, too.
The following terms are easy: L =

∫
∂Lr

∂m dm, Lν =
∫

ενdm,
∫

εndm = −dEn

dt .
The integration over εg is more difficult. Use

εg = −∂u

∂t
+

P

ρ2

∂ρ

∂t
.

Integration of the first term gives −dEi/dt. We also know that

Eg = −3
∫ M

0

P

ρ
dm,

which we differentiate w.r.t. t. The same is done for the hydrostatic equation, which, after multiplication
by 4πr3 and integration gives:∫ M

0

4πr3 ∂Ṗ

∂m
dm = 4

∫ M

0

Gm

r

ṙ

r
dm = 4Ėg

The l.h.s. is integrated by parts and becomes

[
4πr3Ṗ

]M
0

− 3
∫ M

0

4πr2 ∂r

∂m
Ṗdm

Again, P (M) = 0 is assumed, and the first term vanishes. In the second one ∂m
∂r = 4πr2ρ is used and

then we get

−3
∫ M

0

Ṗ

ρ
dm = 4Ėg.

This we use for the differentiated form of (Eg) and obtain finally:

Ėg = −
∫ M

0

P

ρ2
ρ̇dm

which is the last term in (εg), and therefore the equation for Ẇ is recovered, without the Ekin-term,
however. If instead of the hyrostatic equation the one including the acceleration term had been used, this
last missing term would have been recovered as well. We have shown, therefore, that our local energy
conservation equation indeed yields the global one, if properly integrated.

1.2.4.2 The nuclear timescale

The nuclear timescale is defined as τn := En/L. The energy reservoir available to a star is approx. its
mass of fuel times the erg/g of fuel.
For the Sun in hydrogen burning, where q = 6.3 · 1018 erg g−1, this is (H-fraction by mass ≈ 0.7) in total
8.75 · 1051 erg. With L� = 4 · 1033 erg s−1, we get

τn = 7 · 1010 yrs

.
Therefore: τn � τKH � τhydr

This is the timescale most important for most stars in most evolutionary phases. ∂Lr

∂m ≈ εn to high
precision is an equivalent statement. It implies that εg ≈ 0 or that the star is said to be in thermal
equilibrium. Together with the mechanical equilibrium this is also called complete equilibrium, because
all terms involving dt are missing. Of course, complete equilibrium cannot be achieved accurately, as will
be discussed later.
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1.2.5 Energy transport

Star lose energy – generated deep inside – from the surface. This must be transported along the negative
T -gradient, which can be estimated to be (for the Sun) �T/�r ≈ 107/1011 = 10−4 (K/cm). Means for
this are radiation, convection and conduction, the latter being the least important. In a general form,
the equation for the transport is written as

∂T

∂m
= −T

P

Gm

4πr4
∇ (1.23)

which is nothing else than the definition of ∇, which has to be replaced by the appropriate expression
for the respective transport mechanism.

1.2.5.1 Radiative transport

The mean free path for a photon in the stellar interior is lph = 1/(κρ). κ is the mean absorption coefficient
per mass unit, averaged over frequency. It depends on �X, ρ, T and is ≈ 1 cm2/g inside stars, but varies
from 10−6 to 106. The typical value corresponds to lph = 2 cm.
Together with the T -gradient this implies that the anisotropy in radiation is of order 10−10 only, and
black body conditions prevail. The net transport is due to the small surplus of energy radiated from the
more inner – hotter – parts over that from the – cooler – outer parts (within lph).
In analogy to a particle diffusion equation, one derives that for radiation. The diffusive flux �j of particles
(per unit area and time) is

�j = −D�∇n = −1/

3
vlp �∇n

(D is called the diffusion constant; v the diffusion velocity; lp is the particle free path length and n the
particle density).
We now use U := aT 4 for the radiation density (a = 7.57 · 10−15 erg/(cm3K4) being the radiation
constant) in place of particle density and c instead of v. In a 1-dimensional problem, we get for �∇U

∂U

∂r
= 4aT 3 ∂T

∂r

and for the radiation flux F (replacing �j)

F = −4ac

3
T 3

κρ

∂T

∂r
, (1.24)

which can be written as F = −Krad∇T . Krad = 4ac
3

T 3

κρ is interpreted as the radiative conductivity.
With Lr = 4πr2F , we obtain

∂T

∂m
= − 3

64acπ2

κLr

r4T 3
(1.25)

This is the transport equation in the case of radiation. (A strict approach can be found in Hansen &
Kawaler, chap. 4.)

1.2.5.2 The Rosseland mean opacity

κ as used in the transport equation, is actually an appropriate mean of κν over frequency ν:

1
κ

:=

∫∞
0

1
κν

∂Bν

∂T dν∫∞
0

∂Bν

∂T dν
(1.26)
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where

Bν(T ) =
2hν3

c2

(
exp

(
hν

kT

)
− 1

)−1

(1.27)

is the Planck-function for the energy density flux of a black body. (U = aT 4 = (4π/c)
∫

Bνdν).
Note that the Rosseland mean is dominated by those frequency intervals, where matter is almost trans-
parent to radiation!

1.2.5.3 Conduction

In regions of degeneracy, the mean free path of electrons is very large, because the probability for mo-
mentum exchange is very small due to the fact that all energy levels are occupied! We write

Fcond = −Kcond∇T

where the conductivity Kcond has to be calculated by quantum-mechanical means. With this we can
write

F = Frad + Fcond = −(Krad + Kcond)∇T (1.28)

and introduce formally κcond by

Kcond =
4ac

3
T 3

κcondρ
. (1.29)

This allows to replace κrad in (radtrans) by

1
κ

=
1

κrad
+

1
κcond

(1.30)

Physically, this means, that the mechanism with the smaller opacity κ or the higher conductivity K
manages the transport.
For the general transport equation, in the case of radiation + conduction:

∇ = ∇rad =
3

16πacG

κLrP

mT 4
(1.31)

1.2.5.4 Perturbations and stability: convection

The stellar layers are subject to perturbations and motions. The question is, are the layers stable or
unstable? Will the perturbations grow? If they grow they can transport energy and thus have to be
considered in the energy transport equation.
Consider moving mass elements; assume no heat exchange with surrounding (adiabatic movement).
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Illustration of blobs moving in unperturbed surrounding (from KW)

The figure illustrates the picture we have in mind: the temperature excess DT is positive, if the element
is hotter than its surrounding. DP = 0 due to hydrostatic equilibrium. If Dρ < 0, the element is lighter
and will move upwards. Take an element and lift it by �r:

Dρ =
[(

∂ρ

∂r

)
e

−
(

∂ρ

∂r

)
s

]
�r

The stability condition therefore is
(

∂ρ
∂r

)
e
−
(

∂ρ
∂r

)
s

> 0, because then the buoyancy force −gDρ will be
directed downward and the element will return.
With the EOS d ln ρ = αd lnP − δd lnT − ϕdµ; for an ideal gas, α = δ = ϕ = 1; (dµ)e = 0.
Then the stability conditions changes into(

δ

T

dT

dr

)
s

−
(

δ

T

dT

dr

)
e

−
(

ϕ

µ

dµ

dr

)
s

> 0 (1.32)

Now define (for practical use) the pressure scale height

HP := − dr

d lnP
= −P

dr

dP
=

P

ρg
> 0 (1.33)

(examples (cm): solar photosphere: 1.4 · 107; at R�/2: 5.2 · 103; center → ∞)
multiply the stability condition by HP to obtain

(
d lnT

d lnP

)
s

<

(
d lnT

d lnP

)
e

+
ϕ

δ

(
d lnµ

d lnP

)
s

(1.34)

∇s < ∇ad +
ϕ

δ
∇µ (1.35)

∇rad < ∇ad +
ϕ

δ
∇µ (1.36)

The last equation holds in general cases and is called the Ledoux-criterion for dynamical stability. A
special case of it is the Schwarzschild-criterion, which is obtained by simply setting ∇µ = 0 (homogeneous
medium). Note that since ϕ/δ > 0, ∇µ will stabilize, because usually µ increases inwards (as P ).
If the stability criterion is fulfilled, the energy is transported by radiation, if not, by convection, i.e. by
turbulent motion of element clumps (blobs).
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Illustration of the various temperature gradients in a convectively unstable region

(from KW)

In an unstable layer, the following relations hold:

∇rad > ∇ > ∇e > ∇ad (1.37)

∇ is the actual gradient that will result in the convective layer. The first inequality arises from the fact
that only part of the flux can be tranported by radiation, since convection is carrying some in any case.
The last is due to the fact that the element will cool more than just adiabatic, because some energy will
be lost by other means (radiation, conduction). The middle one is just the stability criterion for the blob
not to be pushed back. The task of a convection theory is it to derive ∇!

1.2.5.5 Energy transport by convection

Convection in stars is a

• highly turbulent (Reynolds number Re := vρlm
η ≈ 1010; η viscosity; v speed of blobs ≈ 103 cm/s

= 10−5vsound; lm = 109 cm; in laboratory: turbulence sets in when Re > 100);

• 3-dimensional

• non-local

motion in compressible medium on dynamical timescales. This is impossible to be incorporated in stellar
evolution calculations. One needs simple descriptions for the interesting quantities as ∇.
There exist different approaches of different level of sophistication:

1. full 3-d hydro-calculations: give a snapshot of turbulent convection, mostly in simplified situations
or for the Sun (e.g. Nordlund, A&A 107, 1 (1982); Nordlund & Dravins A&A 228, 155 (1990))

2. 2-d hydro-models: can scan a wider stellar parameter range; applicable to shallow convection zones
(as in White Dwarfs) or to surface convection in the Sun and other stars (e.g. Freytag, Steffen &
Ludwig, A&A 313, 497 (1996))



18 CHAPTER 1. PRINCIPLES OF STELLAR STRUCTURE THEORY

3. Analytical solutions of the non-local convection equations with a momentum approach; describes
mean values; several assumptions concerning fluctuations and viscosity, etc. (Grossman, MNRAS
279, 305 (1996))

4. Solution of full set of dynamical equations by using correlation functions (Xiong, Cheng & Deng,
ApJS 108, 529 (1997)); similar to 3.

5. Local descriptions working with blob-picture of perturbations but keeping turbulent energy spec-
trum (e.g. Canuto, ApJ 467, 385 (1996) – also a review)

6. Local description in the most simplified way – the Mixing Length Theory (MLT) – with a free
parameter (see Kippenhahn & Weigert for a detailed derivation)

While the purely numerical approaches are limited by the timescales, the full-equations approach suffers
from inherent assumptions and the unsolved problem how to be incorporated in full stellar models. The
local approaches are efficient, but lack physical justification, cannot describe non-local and time-dependent
effects, and need a calibration (if possible at all!). Nevertheless, the MLT has been very successful in
stellar structure theory and is used for all problems (sometimes with extensions to describe non-local
effects like overshooting). Recently, it has received some justification from 2-d models.

A simplified derivation of the MLT equation:

F =
Lr

4πr2
= Fconv + Frad

be the total energy flux transported by convection and radiation (in as yet unknown parts). If it were
transported by radiation only,

F =:
4acG

3
T 4m

κPr2
∇rad;

instead, the radiative flux is

Frad =
4acG

3
T 4m

κPr2
∇

and

Fconv = ρvcP (DT )

is the flux carried by a blob with DT > 0. v (now the velocity of the moving element) and DT must be
average values to be derived.
Assume, a blob starts somewhere with DT > 0 and loses identity after a typical mixing length distance
lm. On average

DT

T
=

1
T

∂(DT )
∂r

lm
2

= (∇−∇e)
lm
2

1
HP

DT leads to Dρ; the resulting buoyancy force is therefore fb = −gDρ/ρ = gδDT/T . The work done by
it is (assume 50%)

1
2
fb

lm
2

= gδ(∇−∇e)
l2m

8HP

Again, assume half of this goes into kinetic energy of the element, the rest be used up for “pushing away”
the surrounding. Then,

v2 = gδ(∇−∇e)
l2m

8HP
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and

Fconv = ρcP T
√

gδ
l2m

4
√

2
H−3/2

p (∇−∇e)3/2

Te changes due to adiabatic cooling and radiation losses,

(
dT

dr

)
e

=
(

dT

dr

)
ad

− λ

ρV cP v
,

which can be transformed into ∇e −∇ad = λHP

8V vTcP
; λ describes the radiation loss relative to the blob’s

energy. At this point, geometric factors and other assumptions come in (for the details see Kippenhahn
& Weigert); finally, one obtains 5 equations for v, Fconv, Frad, ∇ and ∇e in terms of P, T, ρ, lm,∇ad,∇rad.
An analytical solution is possible and leads to a cubic equation:

(ξ − U)3 +
8U

9
(ξ2 − U2 − W ) = 0 (1.38)

where

ξ2 = ∇−∇ad + U2

U =
3acT 3

cP ρ2κl2m

√
8HP

gδ

W = ∇rad −∇ad

W and U can be calculated at any point (local!) and (1.38) can be solved by numerical methods (more
stable than analytical solution).
Physical interpretation: U = σrad

σconv
is the “ratio of conductivities”, which are defined through Frad = σrad∇

and Fconv = σconv(∇−∇ad)3/2. U is related to

Γ :=
(∇−∇e)1/2

2U
=

(∇−∇e)
(∇e −∇ad)

which is the ratio of energy transported by the blob over that lost from it, or the “efficiency” of the
convection.
If U small, Γ is large and almost all flux is transported by convection and the resulting gradient is ≈ ∇ad.
If U is large, Γ is small, and – although transport is by convection – the resulting gradient is almost ∇rad.
In general, convection is superadiabatic:

∇ = ∇ad + δ∇

The equations still contain the mixing length lm = αMLTHP , where αMLT is the (in)famous mixing-length
parameter. It is of order 1, and is determined usually by solar models (see later), αMLT ≈ 1.2 · · ·2.2. It is
assumed (without real justification) to be constant throughout a star and the same for all stellar masses,
compositions and evolutionary phases.
Example for ∇: Sun, r = R�/2, m = M�/2, T = 107, ρ = 1, δ = µ = 1

→ U = 10−8 → ∇ = ∇ad + 10−5 = 0.4

(as long as ∇rad < 100 · ∇ad); at center, ∇ = ∇ad + 10−7.
The Sun is in most parts almost adiabatic (in this case, lm is unimportant). Red Giants can have very
superadiabatic envelopes!
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1.2.6 The chemical composition

So far, we have only treated m, Lr, P , T as the independent variables. However, many quantities depend
also on the composition �X, and so does the structure. This composition must change with time, because
L is mainly obtained from nuclear reactions and these change �X on long timescales. It can furthermore
change due to diffusion, convection and other mixing processes.
Notation: relative element mass fraction: Xi := mini

ρ , with
∑

i Xi = 1; special cases: hydrogen X , helium
Y , “metals” Z = 1 − X − Y . mi and ni are particle masses and densities.
Examples (approximative numbers):

• Big Bang nucleosynthesis: X ≈ 0.75 Y ≈ 0.25 Z ≈ 0.0;

• Population II stars: X = 0.75 Y = 0.25 Z ≈ 10−4

• Sun: X = 0.70 Y = 0.28 Z = 0.02

1.2.6.1 Changes due to nuclear reactions:

∂Xi

∂t
=

mi

ρ
[
∑

j

rji −
∑

k

rik] (1.39)

The first term describes the creation of element i by a reaction of element j, and the second the destruction
by the production of element k. The energy released is εij = 1

ρrijeij . rij is the number of reactions per
second, and eij the energy released per reaction, per particle mass it is qij = eij/mi

For the conversion of hydrogen into helium, for example, we get

∂X

∂t
= − εH

qH
= −∂Y

∂t
.

1.2.6.2 Changes due to diffusion:

Several effects work at same time:

1. Gradients in composition tend to be smoothed out; “concentration diffusion”;

2. Heavier particles sink in potential; “pressure diffusion” or “sedimentation”;

3. Heavier particles are slower, restricted to higher temperature regions; “temperature diffusion”.

Formally:

�vD = −1
c
D
(

�∇c + kT
�∇ ln T + kP

�∇ ln P
)

(1.40)

This is obtained by using Fick’s law �jD = c�vD = −D�∇c, where �jD is the diffusive particle flux, D the
diffusion constant, and c the concentration (relative number density).
From the continuity equation one gets (constand D assumed):

∂c

∂t
= −�∇�jD

= �∇(D�∇c)
= D∇2c

Corresponding equations can be derived for the other two terms of (1.40), with kT and kP describing
relative diffusion speeds w.r.t. concentration diffusion. They are positive and of order 1.
In the sun, the timescale for diffusion is 1013 yrs, or, in 109 yrs composition changes of 10−4 can be
expected. In fact, they are measurable, and diffusion has to be included in the solar models! The net
effects are: due to P - and T -diffusion He is sinking towards the center of the Sun.
The general assumption has been that diffusion is unimportant, except for long-lived hot stars (e.g. White
Dwarfs), where convection does not counteract diffusion.
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1.2.6.3 Mixing by convection:

In completely convective regions, the mixing speed is so fast (≈ 104 cm/s; τ ≈ 1 yr) that instantaneous
complete mixing can savely be assumed. Only in semiconvective regions – here the Ledoux-criterion
for stability is fulfilled, but the Schwarzschild-criterion is violated – it is slow and resembles a diffusion
process. In any case, formally, convective mixing can be treated as an additional diffusion process with
appropriate constants.

1.2.7 The equations - summary

m is the Lagrangian coordinate;
r, P, T, Lr are the independent variables;
Xi are the composition variables, entering only through time derivatives;
ρ, κ, ε, . . . are dependent variables;
The four structure equations to be solved are:

∂r

∂m
=

1
4πr2ρ

(1.41)

∂P

∂m
= − Gm

4πr4
− 1

4πr2

∂2r

∂t2
(1.42)

∂Lr

∂m
= εn − εν − cP

∂T

∂t
+

δ

ρ

∂P

∂t
(1.43)

∂T

∂t
= − GmT

4πr4P
∇ (1.44)

In the last equation, the appropriate ∇ has to be inserted; for radiation this is

∇rad =
3

16πacG

κLrP

mT 4
(1.45)

Finally, for the composition, we have

∂Xi

∂t
=

mi

ρ

⎛
⎝∑

j

rji −
∑

k

rik

⎞
⎠ (1.46)

1.2.8 Simple stellar models: Homology

Homology is the assumption that stars are related to each other by a very simple, linear similarity relation,
which is that at

m1

M1
=

m0

M0
(1.47)

also
r1

R1
=

r0

R0
(1.48)

Insert this into mass equation:

ρ1 = ρ0

(
M1

M0

)(
R1

R0

)−3

(1.49)

to obtain the homology scaling law for the density at the same relative mass fraction.
From the hydrostatic equation, one obtains similarly

P1 = P0

(
M1

M0

)2(
R1

R0

)−4

(1.50)
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or P ∝ (M2/R4).

To obtain even further insight, one assumes power laws for the dependent variables:

P = P0ρ
χρT χT (1.51)

εn = εn,0ρ
λT ν (1.52)

κ = κ0ρ
nT−s (1.53)

All exponents are assumed to be the same in homologous stars and at all m.
For example, since d lnP = 2d lnM − 4d lnR, we get also

4d lnR + χρd ln ρ + χT d lnT = 2d lnM

We want to obtain relations of the form R ∝ MαR , where the individual αs have to be determined from
the structure equations and the homology assumptions.
From above equation it follows, for example, that

4αR + χραρ + χT αT = 2

This leads to a matrix equation for the α vector (αR, αT , αρ, αL). The determinant of the matrix is, in
the case of radiative transport:

Drad = (3χρ − 4)(ν − s − 4) − χT (3λ + 3n + 4) (1.54)

For convection, it is:

Dconv = (3χρ − 4) + 3χT (Γ3 − 1) (1.55)

where (Γ3 − 1) =
(

d ln T
d ln ρ

)
ad

.

In the first case, one obtains, e.g. αT = −2(χρ + λ + n)/Drad

Application: homologous stars similar to Sun

n = s = 0 (electron scattering); λ = 1, ν = 15 (CNO-cycle); χρ = χT = 1 (ideal gas).
⇒ αR = 0.78 : observed 0.75; αL = 3.0 : obs. 3.5; αT = 0.22 αρ = −1.33 : correct dependen-
cies (from numerical models); note that density decreases with mass!

From homology, it also follows for the hydrogen-burning lifetime of stars:

τnuc = 1010

(
M

M�

)(
L�
L

)
= 1010

(
M

M�

)1−3.5

→ more massive stars live shorter! (here we assumed for the numerical factor that about 10% of the mass
is converted into helium).
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1.3 The Microphysics: EOS, opacity, energy generation

1.3.1 Equation of State

1.3.1.1 Ideal gas with radiation pressure

P = nkBT =
R
µ

ρT (1.56)

with ρ = nµmu (mu = 1.66 · 10−24 g; R = kB/mu = 8.31 · 107 erg
gK (gas constant); µ: molecular weight,

mass of particle per mu).
In stars, there are many components of the gas, with relative mass fractions Xi = ρi

ρ → ni = ρXi

muµi

(electrons are neglected in partial densities)

P = Pe +
∑

i

Pi = (ne +
∑

i

ni)kT (1.57)

a completely ionzied atom contributes (1 + Zi)ni to n, such that

P = nkT = R
∑

i

Xi(1 + Zi)
µi

ρT =
R
µ

ρT (1.58)

with µ :=
(∑

i
Xi(1+Zi)

µi

)−1

being the mean molecular weight.

For a neutral gas, µ =
(∑

i
Xi

µi

)−1

.

The mean molecular weight per free electron is µe :=
(∑

i
XiZi

µi

)−1

= 2
(1+X) , taking into account that

Z = 1 − X − Y and for helium and metals µi/Zi ≈ 2.

Radiation pressure can be added to the ideal gas equation.

Prad =
1
3
U =

a

3
T 4

(
a = 7.56 · 10−15 erg

cm3K4

)
Define Pgas

P := β. Then
(

∂β
∂T

)
P

= − 4(1−β)
T and

(
∂β
∂P

)
T

= (1−β)
T .

Furthermore

α :=
(

∂ ln ρ

∂ ln P

)
T

=
1
β

δ := −
(

∂ ln ρ

∂ ln T

)
P

=
4 − 3β

β

ϕ :=
(

∂ ln ρ

∂ ln µ

)
T,P

= 1

cP :=
R
µ

[
3
2

+
3(4 + β)(1 − β)

β2
+

4 − 3β

β2

]
(1.59)

∇ad :=
Rδ

βµcP

γad :=
(

d lnP

d ln ρ

)
ad

=
1

α − δ∇ad

(1.60)

For β → 0, cP → ∞, ∇ad → 1/4 and γad → 4/3.
For β → 1, cP → 5R

2µ , ∇ad → 2/5, and γad → 5/3.
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Note: there are further thermodynamic derivatives in use in the literature, the so-called gammas. Here
is a list of relations:

γad =: Γ1

∇ad =:
Γ2 − 1

Γ2

Γ3 :=
(

d lnT

d ln ρ

)
ad

+ 1

Γ1

Γ3 − 1
=

Γ2

Γ2 − 1

1.3.1.2 Ionization

The Boltzmann-equation describes the relative occupation numbers of different energy states in thermal
equilibrium. If applied to atoms being ionized, taking into account the distribution of electrons in phase
space, one obtains the Saha-equation4

nr+1

nr
Pe =

ur+1

ur
2
(2πme)3/2

h3
(kT )5/2 exp(−χr/kT ), (1.61)

where nr is the number density of atoms (of one species) in ionization state r, χr is the correspond-
ing ionization energy, ur is the partition function (usually the ground state statistical weight) and
h = 6.626 · 10−27 erg s the Planck constant. Pe = nekT is the electron pressure, finally.

Application: hydrogen ionziation in Sun
n = n0 + n1 (total of atoms in ground state 0 and ionized 1); ne = n1; x := n1

n0+n1

Pe = Pgas
ne

ne+n = Pgas
x

x+1

⇒ x2

1 − x2
=

u1

u0

2
Pgas

(2πme)3/2

h3
(kT )5/2e−χ1/kT

u0 = 2, u1 = 1 are ground-state stat. weights; χ1 = 13.6 eV.
At the solar surface, T = 5700 K, Pgas = 6.8 · 104, → x ≈ 10−4; at Pgas = 1012, T = 7 · 105, → x ≈ 0.99.

The mean molecular weight for a partially ionized gas is easily calculated by µ = µ0/(E + 1), where µ0

is the molecular weight of the unionized gas, and E the number of free electrons per all atoms. With µ
again the ideal gas equation can be used.

For a mixture of atoms, a set of Saha-equations coupling all ionization states (Pe is coupling different
atoms) is to be solved (numerically).
Here is an example for the run of ionization states:

4see Kippenhahn & Weigert, pp. 107, for a detailed derivation.
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Illustration of ionization of hydrogen and helium within a stellar envelope. In panel

(b) the corresponding run of ∇ad is shown. The depression is due to the increase in

cP due to ionziation. Since ∇ad is getting smaller, convection will set in. (from KW)

Note the following defect of the Saha-equation: the ionization increases with T and decreases with
P . When T ≈ const., as in stellar cores, the ionization degree should decrease, which is unphysical.
The explanation lies in the fact that the ionization potential is suppressed, if the atoms approach each
other, and individual potentials overlap. This is called pressure ionziation, and is treated in practice by
“complete ionziation”-conditions or a change in the χi.

1.3.1.3 Electron degeneracy

At high densities, the electrons are degenerate – from weak degeneracy as in the solar center to complete
relativistic degeneracy as in massive giants’ cores. The equation of state is then dominated by the electron
pressure which arises from the fact that all quantum cells in phase space are occupied (Pauli-principle).
The distribution of electrons in momentum space follows Boltzmann equation (p is momentum):

f(p)dpdV = ne
4πp2

(2πmekT )3/2
exp

(
− p2

2mekT

)
dpdV (1.62)

On the other hand, the Pauli-principle limits this:

f(p)dpdV ≤ 8πp2

h3
dpdV (1.63)
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Run of f(p) according to (f(p)) for three different temperatures and the limit imposed

by Pauli’s principle. Obviously, at lower T , the Boltzmann distribution can no longer

be realized. (from KW)

Completely degenerate gas:

f(p) =
8πp2

h3
for p ≤ pF ∝ n1/3

e (1.64)

= 0 for p > pF

EF = p2
F

2me
∝ n

2/3
e is the Fermi-energy (recall that EF > 0 even if T = 0); for EF ≈ mec

2, ve ≈ c, this
situation is called relativistic complete degeneracy.

1. pF � mec (non-relativistic)

Pe = 1.0036 · 1013

(
ρ

µe

)5/3

Pe =
2
3
Ue (1.65)

2. pF � mec (relativistic)

Pe = 1.2435 · 1015

(
ρ

µe

)4/3

Pe =
1
3
Ue (1.66)

(Ue is the internal energy per electron and unit volume). In all cases Pi � Pe because of their much
higher mass.

Partial degeneracy:
At any finite T, the electron gas deviates from complete degeneracy. Depending on T (and ne), this can be
neglected or has to be included. Increasing T enough must finally lead back to a Boltzmann-distribution.
The appropriate statistics to describe the partially degenerate state is the Fermi-Dirac statistics:

f(p)dpdV =
8πp2

h3

1
1 + exp

(
E
kT − Ψ

)dpdV (1.67)
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with Ψ = ne

T 3/2 called the degeneracy parameter. At constant Ψ, T ∝ ρ2/3 for the non-relativistic case,
and ∝ ρ1/3 in the relativistic one.
From (1.67) one derives the following relations for Fermions:

ne =
8π

h3

∫ ∞

0

p2dp

1 + exp
(

E
kT − Ψ

)
Pe =

8π

3h3

∫ ∞

0

p3v(p)dp

1 + exp
(

E
kT − Ψ

)
Ue =

8π

h3

∫ ∞

0

Ep2dp

1 + exp
(

E
kT − Ψ

)

In the limiting cases, the known distributions are recovered. In practice, the EOS for this case has to be
solved by either analytical approximative formulae or by numerical solution of the involved Fermi-Dirac
integrals integrals. Numerical values can be found in Kippenhahn & Weigert, for example.

            

f(p) for partially degenerate gas with ne = 1028 cm−3 and T = 1.9 · 107 K corre-

sponding to Ψ = 10. (from KW)

The equation of state for normal stellar matter:

P = Pion + Pe + Prad =
R
µ0

ρT +
8π

3h3

∫ ∞

0

p3v(p)dp

1 + exp
(

E
kT − Ψ

) +
a

3
T 4 (1.68)

ρ =
4π

h3
(2me)3/2muµe

∫ ∞

0

E1/2dE

1 + exp
(

E
kT − Ψ

) (1.69)
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Sketch of the regions in the lg ρ-lg T diagram, where the EOS is dominated by the

different effects. (from KW)

At even higher densities (≈ 8 · 104 higher) ions can become degenerate as well. Note further that for
electron degeneracy, P ≈ Pe, but ρ ≈ ρion.

1.3.1.4 Further effects:

Up to now, we always have considered an ideal gas. Non-ideal effects like Coulomb screening or van-
der-Waals forces have to be taken into count separately. The Debye-Hückel theory for screening is most
easiest to implement. If the interaction between ions (Coulomb interaction) gets comparable to the
thermal energy, collective effects like crystallization happen. This applies to White Dwarfs, for example.
For details, see, the textbook by Shapiro & Teukolsky: Black Holes, White Dwarfs and Neutron Stars,
Wiley (1983).
At nuclear matter densities, neutronisation sets in. Week interactions cause protons and electrons to
become neutrons, which are degenerate. These objects are neutron stars.

1.3.1.5 EOS tables

In practice, for the EOS one has to use tabulated values for density and internal energy (and the various
derivatives), if high accuracy is required. Presently, for normal densities, tables by Rogers, Swenson &
Iglesias (ApJ 456, 902, 1996) are the best reference (OPAL-EOS); for higher densities (very low-mass
stars, white dwarfs, etc.) the best choice is Saumon, Chabrier & van Horn (ApJ Suppl. 99, 713, 1995)
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1.3.2 Opacity

Photons are absorbed and reemitted (scattered) while passing through the stellar interior. Therefore
they transport energy from hotter to cooler layers. The “transparency” of the material determines the
free pathlength and thus the resulting termperature gradient. The basic effects are

Electron scattering:
photons are electromagnetic waves giving rise to e−-oscillations which lead to re-emission of photons
(Thomson-scattering). The opacity is described by

κsc =
8π

3
r2
e

memu
= 0.20(1 + X) cm2g−1 (1.70)

at T > 108 also momentum exchange can happen and κ < κsc(Compton-scattering).
free-free transitions:
e− in thermal motion coming close to ion, both particles form a system able to absorb and emit radiation.
This effect is v-dependent. It is described by the classical Kramers formula

κff ∝ ρT−7/2 (1.71)

The constant of proportionality includes quantum corrections.

bound-free transitions:
An atom from ground or excited state is converted into an ion by absorption of photons with the necessary
energy. A Kramers-type approximation is

κbf ∝ Z(1 + X)ρT−7/2 (1.72)

A special case is the H−-ion, which forms below 104 K, but is so loosely bound, that photon with λ < 1655
nm (infrared) can destroy it.

bound-bound transitions:
This is the dominant process below 106 K. It comes from the change of electrons into higher excited states
and back, and depends strongly on the atomic level structure of the atoms. No simple formula is available.

e−conduction:
This is no radiation process, but, as shown in Sect. 1.2.5, can be treated by the appropriated definition
of a conduction opacity. It dominates at high densities (degenerate cores of stars).

κc ∝ ρ−2T 2 (1.73)

In practice, κ is calculated by specialized groups and provided in the form of opacity tables that depend
on composition, T and ρ. About 18 metal species have to be taken into account to reach an accuracy of
≈ 10%.
The most recent tables are those of the Livermore group (OPAL), published in Rogers & Iglesias, ApJS
79, 507 (1992) and those of the Opacity Project, e.g. Seaton et al., MNRAS 260, 805 (1994). Older tables
came from the Los Alamos group (e.g. Weiss, Keady & Magee, At. Data & Nuclear Data Tables 45, 209
(1990)). They include also molecules (important below ≈ 8000 K). Most recent low-T tables including
molecules and dust are those by Alexander & Fergusson (ApJ 437, 879 (1994)).



30 CHAPTER 1. PRINCIPLES OF STELLAR STRUCTURE THEORY

1.3.3 Nuclear Energy Production

Principle: Nuclei have higher mass when existing separately than when combined into nucleus of higher
mass A (in mu). Difference in mass (mass defect) via E = mc2 liberated as energy.
Example: 4 1H (protons) : 4 · 1.0081mu, but 4He: 4.0089mu. Difference (0.7%) : 26.5 MeV (931.1 MeV
= 1 mu; 1 MeV = 1.6 · 10−6 erg). The solar luminosity in terms of mass is 4.25 · 1012 gs−1. If 0.7% of
M� is available, the sun can shine for 1011 yrs.
The binding energy is defined as:

EB := [(A − Z)mn + Zmp − Mnuc]c2 (1.74)

and f := EB/A is the b.e. per nucleon, which is of order 8 MeV except for the lightest elements. Its
maximum (8.4 MeV) is reached for 56Fe, which is the most tightly packed nucleus. For H, it is 0 MeV
by def., 4He = 6.5, 12C = 7.5.
All reactions transforming nuclei into 56Fe will release energy. For A < 56 this works by fusion (and
happens in stars), for A > 56 by fission (nuclear reactors; and stars with excessive energies - supernovae).

Nuclear fusion:
To merge two nuclei, the Coulomb barrier between them, being ≈ Z1Z2 MeV high, must be overcome
such that nuclear forces (attractive) work. The nuclei must come as close as

r0 ≈ A1/31.44 · 10−13 cm.

In thermonuclear reactions, the thermal motion (Ekin) is used. In a Maxwell-Boltzmann-distribution of
temperature T , there are always some particles fast enough, but their number is much too small; e.g. at
T = 107 K, kT/Ecb ≈ 10−3, such that only a fraction of 10−434 particles will have the necessary energy.
The solution has been found by Gamov: quantum-mechanical tunnelling.

            

The Gamow peak (strongly magnified); the dashed line is the Maxwell-distribution,

the dot-dashed one the tunnelling probability (from KW)

We skip the derivation of nuclear cross sections, which can be found in great detail in Clayton’s book
(Principles of stellar structure and nucleosynthesis). We mention only, that for non-resonant reactions,
it usually is brought into a form

σ(E) = S(E)E−1 exp−πη η =
√

(m/2)
2πZ1Z2e

2

hE1/2
(1.75)
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m being the reduced mass of the reacting nuclei. S(E) is measured in laboratories, but usually at energies
much higher than that of stellar plasmas. The extrapolation is critical. Resonant reactions have to be
measured in the laboratory or predicted by nuclear theories. They can be most critical for reactions to
occur.

The thermonuclear reaction rate

rjk =
njnk

1 + δjk
〈σv〉 (1.76)

is the number of reactins per unit volume and time; 〈σv〉 is the reaction probability per pair of reacting
nuclei and second, it is averaged over the Maxwellian velocity distribution

f(E)dE =
2√
π

√
E

(kT )3/2
e−E/kT dE (1.77)

〈σv〉 =
∫ ∞

0

σ(E)vf(E)dE (1.78)

The energy released by the reaction is then

εjk =
1

1 + δjk

qjk

mjmk
ρXiXk〈σv〉 (1.79)

with qjk being the energy released per reaction.

One can approximate εjk by εjk,0

(
T
T0

)ν

. One finds that for H-burning ν = 5 . . . 15 and for He-burning
ν = 40. That implies that nuclear reactions are a very efficient thermostat.

Electron shielding:
The cloud of e− reduces the repulsive Coulomb force. This leads to an increase in the reaction probability
by about 10%. Usually, the weak limit is appropriate, which holds, if ED = Z1Z2e2

rD
� kT (rD =

√
kT

4πχne2

is the Debye-Hückel length and χ an average particle density)

In practice, we use published fit formulae for the individual rates. Most famous are those by Fowler and
collaborators, for example Caughlan & Fowler 1988 (At. Data & Nuc. Data Tables, 40, 283).
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1.3.3.1 Major burning stages in stars

In stars, fusion takes place in well-separated phases of burning lighter elements to heavier ones. The
sequence is hydrogen → helium → carbon/oxygen → neon → silicon → iron. For us, only the first two
are of interest, since the temperatures needed for the subsequent phases are not reached in stars of low
and intermediate mass discussed in later lectures.

Hydrogen-burning takes place via two major mechanisms. The p-p-chain, so-called after the initial
reaction p(p, νe+)d (the positron will annihilate with one of the electrons and the energy is added to the
radiation field).

The pp-chain for the fusion of hydrogen to helium. (from KW)

It consists actually of three different paths, with ppI being the most important one. ppII and ppIII
become more important the higher T . Note the neutrinos emitted. They carry away energy and the
three chains deliver 26.20, 25.67 and 19.20 MeV per completion.
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The second way to create helium in stars is the CNO-cycle, where these three elements serve as catalysts.

The CNO-cycle. (from KW)

Here, a few particularities have to be noted:

• The e+ reactions are so fast that they can be assumed to happen instantaneously.

• The proton-capture reactions have different speed. Therefore, the complete cycle is dominated by
the slowest reaction, which is 14N(p, γ)15O.

• qCNO ≈ 25MeV

• In equilibrium, almost all nuclei are converted into 14N .

• The isotope ratio 12C/13C is much smaller than in cosmic matter (3-6 instead of 40)

• At low T (solar center), the cycle is too slow to be important, but the C → N transformation is
working.

• Equivalent cycles involving Na and Mg exist and operate partially at higher temperature (≈ 5 · 107

K).
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With increasing temperature, the CNO-cycle becomes more dominant.

The contribution of pp-chain and CNO-cycle to the total energy pro-

duction ε. (from KW)

Helium-burning starts at about 108 K, reached in most stars easily. Three major reactions are impor-
tant (recall that no protons are left):

1. 3 − α-process: 2α(α, γ)12C; actually two steps: α(α, γ)8Be and 8Be(α, γ)12C; the first one results in
a state of 8Be which, although unstable, has a much longer lifetime than a simple α−α-scatter; together
with the third α is in resonance with a level of 12C at 7.664 MeV. Without this resonant state, no carbon
would exist in large abundance (and no life as we know it?). q = 7.27 MeV.

2. 12C(α, γ)16O: this process becomes important, as soon as enough carbon has been built up and the
helium abundance gets lower (the 3 − α-process is prop. to the cubic power of the helium abundance).
Its reaction is uncertain by a factor of 2! q = 7.6MeV

3. 16O(α, γ)20Ne: important only during the end of helium burning; q = 4.77 MeV

The balance of the three reactions determine the abundances in the C/O-core that results from helium-
burning. Calculations give 50/50 to 20/80 results.

Burning times:

Since the luminosity of a star is roughly determined by its mass and composition, the burning time in
each phase is then determined by the q-values. L is increasing, and q decreasing. Both effects lead to
ever shorter burning times (in yrs):

H : 1010

He : 108

C : 104

... :
...

Si : hrs
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1.3.4 Plasma neutrino emission

We have mentioned that the stellar plasma emits neutrinos, which leave the star almost unhindered (their
mean free path under stellar conditions being of order 100 pc!) and lead to an energy loss Lν.
Processes are:

1. Pair annihilation: e− + e+ → ν + ν̄ at T > 109 K.

2. Photoneutrinos: γ + e− → e− + ν + ν̄ (as Compton scattering, but with ν-pair instead of γ).

3. Plasmaneutrino: γpl → ν + ν̄; decay of a plasma state γpl.

4. Bremsstrahlung: inelastic nucleus–e− scattering, but emitted photon replaced by a ν-pair.

5. Synchroton neutrinos: as synchroton radiation, but again a photon replaced by a ν-pair.

The most important process for stellar interiors are plasma-neutrinos. Tables or formulae for the emission
rates have been calculated by Itoh and group (e.g. ApJS 102, 411, 1996) and (for plasma-neutrinos) by
Haft, Raffelt & Weiss (ApJ 425, 222, 1994).            

The regions in the ρ–T plane, where the different plasma-neutrino processes are dom-

inant (from KW)
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1.4 The complete problem - and its solution

We repeat here again the structure equations:

m is the Lagrangian coordinate;
r, P, T, Lr are the independent variables;
Xi are the composition variables, entering only through time derivatives;
The four structure equations to be solved are:

∂r

∂m
=

1
4πr2ρ

(1.80)

∂P

∂m
= − Gm

4πr4
− 1

4πr2

∂2r

∂t2
(1.81)

∂Lr

∂m
= εn − εν − cP

∂T

∂t
+

δ

ρ

∂P

∂t
(1.82)

∂T

∂t
= − GmT

4πr4P
∇ (1.83)

In the last equation, the appropriate ∇ has to be inserted; for radiation this is

∇rad =
3

16πacG

κLrP

mT 4

Finally, for the composition, we have

∂Xi

∂t
=

mi

ρ

⎛
⎝∑

j

rji −
∑

k

rik

⎞
⎠ (1.84)

∑
i

Xi = 1;

In addition, we have to provide ρ(P, T, Xi), κ(P, T, Xi), rjk(P, T, Xi), εn(P, T, Xi), εν(P, T, Xi), . . .

In space (mass) we have a boundary value problem between 0 ≤ m ≤ M with boundary conditions:

• at center: r(0) = 0, Lr(0) = 0

• at r = R: P and T either from simple assumption P = 0, T = 0 or from atmospheric lower
boundary and Stefan-Boltzmann-law L = 4πσR2T 4

eff

In calculations, the innermost region is expanded around the center into a series in m:

r =
(

3
4πρc

)1/3

m1/3 (1.85)

and

P = Pc − 3G

8π

(
4π

3
ρc

)4/3

m2/3 (1.86)

and

Lr = (εg + εn − εν)cm (1.87)

where the central b.c. have already been used.
The outer boundary condition involves stellar atmosphere calculations, not treated here. Two concepts
are worth being noted:
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1. optical depth: τ :=
∫∞

R
κρdr = κ̄

∫∞
R

ρdr; for τ > 1 matter is said to be optically thick and the
diffusion approximation for radiative transport is valid; below: detailed radiation transport; at τ = 2/3
the Stefan-Boltzmann-law holds.
2. pressure at R: P (R) :=

∫∞
R

gρdr ≈ gR

∫∞
R

ρdr ⇒ P = GM
R2

2
3

1
κ̄

In time, we have an initial value problem (zero-age model).

1.4.1 Numerical methods

Treat spatial and temporal problem separately. At any t, Xi are given. Solve then the spatial problem:

1.4.1.1 Approaches

1. Direct integration : conceptually the easiest method; start at one boundary, integrate (e.g. Runge-
Kutta-type integrator) all equations and check other boundary conditions; repeat if necessary; Problem:
solutions diverge (outer regions) and iterative process not likely to succeed. Improvement: start 2 in-
tegrations from outer and inner boundary, try to merge midway. (Schwarzschild integration; used for
simple models)
2. Difference method : divide star in many mass shells, setup difference equations to replace differential
equations; example:

Pi+1 − Pi

mi+1 − mi
= − Gm̄

4πr̄4

where m̄ is a mean mass over that shell, e.g. mi+1+mi

2 .
This approach couples neighbouring grid-points, the solution is found by requiring that the equations are
fulfilled, and by varying the variables yi; this leads to a Newton-type algorithm involving a large matrix
of dimension Nx4 (N grid-points); it needs for each model a good guess for the solution, otherwise the
Newton-method will not converge.
This method is the standard one used and will be elaborated below.
3. Hybrid methods : Here a direct integration between fixed mesh-point is performed. It is equivalent
to a multiple-fitting method, but the variation of the guesses at the fixed points is done via a Newton-
method. (see the book by de Loore and Doom for a description)

1.4.1.2 The Henyey-method:

This is the realization of the second method and it concerns the solution of the matrix inversion. A com-
plete description is found in Kippenhahn, Weiger, Hofmeister (1967) and in the textbook by Kippenhahn
& Weigert.
Write the equations in a general form:

Aj
i :=

yj+1
i − yj

i

mj+1
i − mj

i

− fi(y
j+1/2
1 , . . . , y

j+1/2
4 ) (1.88)

where the upper index stands for grid-point (j + 1/2 is a mean value) and the lower for the i-th variable
(out of 4). A solution is found, if Aj

i = 0.
Similarly, the outer and inner boundary conditions are cast into equations

Bi = 0 i = 1, 2 (1.89)

and

Ci = 0 i = 1, . . . , 4 (1.90)

where the inner one are to be taken at grid-point N − 1 and the expansions around m = 0 have been
used already.
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A simple counting reveals that we have 2 + 4 + (N − 2) · 4 = 4N − 2 equations and 4 unknowns at N
grid-points −2 at the outer boundary, which again is 4N − 2. A solution is therefore well-determined.
The solution is found via the ordinary Newton-approach:

Aj
i +

∑
i

∂Aj
i

∂yi
δyi = 0 (1.91)

which gives the corrections δyi to the previous variable values. This can be expressed as a matrix equation:

H

⎛
⎜⎜⎜⎜⎜⎝

δy1
1

δy1
2

...
δyN

3

δyN
4

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

B1

...
Aj

i
...

C4

⎞
⎟⎟⎟⎟⎟⎟⎠

(1.92)

The matrix H contains all the derivatives and is called Henyey-matrix. It contains non-vanishing ele-
ments only in blocks. This leads to a particular method of solving it (Henyey-method).

            

The Henyey-matrix for a N = 4 resolution indicating the non-vanishing elements.

(from KW)

The Henyey-method expresses some of the corrections to be calculated in terms of others, e.g.

δy1
1 = U1δy

2
3 + V1δy

2
4 + W1 (1.93)
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This leads to matrix equations for the Ui, Vi, Wi, which can be solved for and the coefficients be stored.
Consider the first block-matrix:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂B1
∂y1

1

∂B1
∂y1

2
. . . 0

∂B2
∂y1

1

∂B2
∂y1

2
. . . 0

∂A1
1

∂y1
1

∂A1
1

∂y1
2

. . .
∂A1

1
∂y2

2
...

...
...

...
∂A4

1
∂y1

1

∂A4
1

∂y1
2

. . .
∂A4

1
∂y2

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

U1 V1 W1

U2 V2 W2

U3 V3 W3

...
...

...
U6 V6 W6

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −B1

0 0 −B2

−∂A1
1

∂y2
3

−∂A1
1

∂y2
4

−A1
1

...
...

...
−∂A1

4
∂y2

3
−∂A1

4
∂y2

4
−A1

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.94)

In the next block, again y2
1 and y2

2 are replace as before, and the other variables are expressed in terms of
y3
3 and y3

4 . This reduces the block of four equations in 8 unknowns into one of 4 unknowns only. This is
repeated until the last block, which consists of 4 equations for 6 unknowns, of which two can be expressed
by the previous coefficients. This block can then be solved for the unknown corrections δyN

1 , . . . , δyN
4 .

Once they are known, the coefficient equations of the previous block allow to calculate the corrections of
the previous block, and so on, until the first one is reached again. This done, the Aj

i can be computed
again (with the derivatives) and the next iteration starts.
Note that this method is linear in grid-points, not quadratical as a simple matrix inversion would be!

Once the spatial problem is solved, the integration in time can be done:

Xi(t + �t) = Xi(t) +
∂Xi

∂t
(T (t), P (t), . . .)�t (1.95)

The most simple approximation is to keep T constant over �t. An improvement is to estimate its run
(from previous evolution).

The nuclear network equation is solved by backward differencing:

Xi(t + �t) = Xi(t) + �t
∑

i

rij(t)Xi(t + �t)Yj(t + �t) (1.96)

The Xi(t +�t) are written as Xi(t) +�Xi and in the product the resulting term �Xi�Xj is neglected
(linearization). This leads to a linear system in the �Xi. Since we have linearized the equations, we
have to ensure that the Xi do not change too rapidly. Therefore, the �t between two consecutive stellar
models (of order 106 yrs) is subdivided into smaller timesteps for the network integration. A similar
method is possible for diffusion equations as well.

1.4.2 Polytropes

Polytropes have been used widely in the pioneer days of stellar evolution theory and are still of conceptual
interest to understand the numerical results. We briefly review the concept, which, for one and all times,
has been discussed in Chandrasekhar’s book “An introduction to the study of stellar structure” (Dover
1958; Chicago 1939).
The idea is that the EOS sometimes takes the form P ∝ ργ (e.g. degenerate gas). One imagines stars for
which the EOS and the actual run of P is of this form; these are polytropes:

P (r) = Kρ1+1/n(r) (1.97)

n: polytropic index. This equation can also be written as

P (r) = Pcθ
(1+n) (1.98)

ρ(r) = ρcθ
n (1.99)

From the hydrostatic equation and Poisson’s equation, one can derive

(n + 1)Pc

4πGρc

1
r2

d
dr

(
r2 dθ

dr

)
= −θn (1.100)
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and with the substitution r = rnζ, where rn is the factor in front of the l.h.s., we get

1
ζ2

d
dζ

(
ζ2 dθ

dζ

)
= −θn (1.101)

This is the Lane-Emden-equation, which uses only the hydrostatic and the polytropic equation. It is a
second order ordinary differential equation easily to be solved numerically. The boundary conditions are:
θ(ζ = 0) = 1 (ρ = ρc) and θ′(0) = 0 (dP

dr = 0). The star’s surface corresponds to the first root of θ, where
P = T = ρ = 0, but M and R might be finite.
Analytic solutions exist for n = 0, 1, 5. For n = 5, the radius becomes infinite.
Interesting cases are n = 1.5 corresponding to P ∝ ρ5/3 (completely degenerate, non-relativistic gas) and
n = 3, which is P ∝ ρ4/3 (fully relativistic, deg. gas). Adiabatic convection zones are polytropes with
n = 1.5, isothermal cores have n = ∞.
In Schwarzschild’s book and the textbooks you will find also discussions of composite polytropes, such
with singular b.c.s, and more.



Chapter 2

The Sun – example of a low-mass
main-sequence star

Our Sun is a typical low-mass star in the longest-lasting phase of evolution, the so-called main-sequence
phase, when the energy production is due to hydrogen fusion in the stellar center. At the same time, due
to its proximity, it provides the best information available about stars. Therefore it always has been the
standard test case for theory. We use the Sun as an example for illustrating structure and evolution of
stars of similar type. The known problems, in particular the classical “Solar Neutrino Problem” will be
discussed as well.

Literature:

• Stix M.: The Sun, Springer, 1989 (a textbook containing everything about the Sun, from structure
to coronal activity; also included a very concise introduction to stellar structure theory)

• Bahcall J.N., Pinsonneault M.H.: Reviews of Modern Physics, vol. 64, 885 (1992) and vol. 67, 781
(1995); the latest reviews by the authority (JNB) on solar models.

• Turch-Chièze S., The Solar Interior, Physics Reports, vol. 230, 57 (1993), a very extendend and
detailed review, discussing technical details to a greater extend.
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2.1 Facts about the Sun as a star

Solar quantities:

Quantity value accuracy source
distance 1.4959 · 1013 cm 10−8 triangulation;

radar & laser ranging
mass 1.959 · 1033 g 10−3 Kepler’s 3rd law
radius 6.963 · 1010 cm 10−4 geometry
expansion 2.4 cm/yr
surf. gravity 2.74 · 104 cm/s2

luminosity 3.845 · 1033 erg/s 10−4 solar constant
Teff 5777 K ±4.5 K Stefan-Boltzmann law
composition Z/X = 0.0245 ±0.0010 solar photospere; meteorites
rel. metal O = 0.49, C = 0.30
number fractions N = 0.05, F e = 0.07
H & He abundance X = 0.713 Y = 0.270 solar models
age 4.57 · 109 yrs ±0.03 · 109 yrs meteorites

If put into HRD of nearby stars, the Sun falls right onto the line of the highest number of stars, which is
called main sequence. From statistical considerations (most stars are where they live longest) and from
the timescales discussed in Chapter 1, this should be the phase of hydrogen fusion.

2.2 Interlude on star formation

2.2.1 General considerations

The theory of star formation is a different field than that of stellar evolution, which usually starts with
the onset of hydrogen burning. The general picture is that out of a cold molecular cloud, clumps begin
to contract, heat up, lose their energy and contract further. The virial theorem already tells us that they
get hotter nevertheless. During the contraction phase the energy lost is taken from contraction only (εg),
but at some point T is high enough for nuclear reactions setting in, and finally hydrogen begins to fuse to
helium. Since T is always highest in the core, this phase is that of core hydrogen burning, when εg ≈ 0,
i.e. all energy is taken from nuclear reactions.
Below a critical mass – M ≈ 0.08 M� – the star is never able to get L from nuclear reactions, but
continues to contract forever. (L is so low – 10−4 L� – that the gravothermal energy is sufficient.) Such
stars are called brown dwarfs. At the lower mass end of those the giant planets follow.
While the details of star formation are a subject of active research, after a certain point, stellar structure
theory can begin to treat the approach to the main sequence. This is, when the star can be identified as
a separate body, contracting on a thermal timescale. In this case, all structure equations are valid. This
is called the pre main sequence phase.

2.2.2 Pre-main sequence evolution

The energy equation is

∂Lr

∂m
= −T

∂S

∂t
;

The whole configuration is very cool: Tc ≈ 105 K and T (R) ≈ 3000 K. The star is very luminous –
lg L/L� ≈ 3 – and the opacities very high.
⇒ the pre-main sequence star is completely convective, therefore homogeneous in composition and is
contracting along the so-called Hayashi-line which is an almost vertical line in the HRD and describes,
where solutions for completely convective stars are possible.
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The evolution of the Sun (courtesy H. Schlattl, MPA)

During the contraction, the central temperature rises and subsequently nuclear reactions set in:

• after < 106 yrs, Tc ≈ 6 · 105 K, and deuterium from the Big Bang is converted into 3He by proton
capture. Since the star is fully convective, all D is converted.

• after ≈ 107 yrs, Tc ≈ 8 · 106 K, and CN-equilibrium can be achieved; formally, the CNO-cycle
is operating, but its cycle-time is so long that it does not produce relevant energies. The initial
C → N conversion, however, is able to make the core convective again, which became radiative
earlier due to decreasing opacities.

• after ≈ 3 · 107 yrs, the pp-chain begins to operate. The additional energy leads to a decrease in L
during which the pp-nuclei assume their equilibrium abundances (esp. 3He).

• after ≈ 4 · 107 yrs, εg ≈ 0 and L is due to εn only. The star has reached the zero-age main sequence
(ZAMS). Note that at that time the star is no longer strictly homogeneous, because nuclear reactions
have taken place and the star is radiative almost everywhere (except for the outermost layers). The
central X is about 10−3 smaller than at the surface.
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The structure of the ZAMS-Sun is shown in the next figure:

The structure of the Sun when on the ZAMS (t = 0) and the changes in the course

of the evolution: T and P . (courtesy H. Schlattl, MPA)
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The structure of the Sun when on the ZAMS (t = 0) and the changes in the course

of the evolution: Lr and m (courtesy H. Schlattl, MPA)

The calculation can also be started on the ZAMS, assuming εg = 0 and homogeneous composition. This is
a rather good approach, and technically much easier, because all ∂t-terms vanish. If the energy generation
is calculated from equilibrium formulae, the composition will change only for hydrogen and helium. If a
nuclear network is used, the participating isotopes will assume their equilibrium abundances. This leads
to an unphysical, but short-lived adjustment phase (and a small loop in the HRD).
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2.3 Evolution on the main-sequence

The Sun, up to its present age, has evolved about half-way through the main-sequence phase (see HRD-
figure). In the course of this evolution, the luminosity has risen from L = 0.68L� and Teff from 5600
K. Central temperature and pressure have increased by 7% and 30%. Energy generation and relative
mass got more concentrated towards the center. The hydrogen abundance has decreased, where energy
is produced. In the center it has gone from X0 = 0.715 to Xc(t�) = 0.36. The energy produced in the
center is to 98% from the pp-chain; the CNO-cycle contributes less than 2%.

The hdyrogen abundance in the present Sun (courtesy H. Schlattl, MPA)

The temperature gradients in the outermost layers are shown in the next figure:

            

The temperature gradients in the solar envelope as a function of P . The depression

of ∇ad in the ionization zones and the corresponding rise of ∇rad leads to convection

(from KW)
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2.3.1 The solar neutrino problem

The neutrino flux as produced within the solar core as a function of relative radius

(courtesy H. Schlattl, MPA)

The neutrinos produced in the nuclear reactions leave the Sun unimpeded and reach Earth (through
which they pass as well – most of them). Inspite of their extremely low cross-sections they are numerous
enough that some of them can be captured in experiments. The counts in these experiments are clearly
lower than the predictions of the theory (by a factor of 2). This constitutes the Solar Neutrino Problem.
However, the experiments have proven that the flux is of the order as predicted and Kamiokande, which
is direction sensitive (scattering experiment), has shown that the measured neutrinos come from the Sun.
This is the final proof that the sun burns hydrogen to helium!

Detector type reaction threshold (MeV) ν from:
Homestake liquid target νe +37 Cl →37 Ar + e− 0.8 7Be & 8B
(Super-)Kamiokande Cerenkov νe + e− → νe + e− 7.5 (5.0) 8B
GALLEX & Sage radiochemical νe +71 Ga →71 Ge + e− 0.23 pp, 7Be & 8B
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The solar ν-spectrum (pp-chain only) and the detector ranges (J. Bahcall)

This figure shows the predicted ν-spectrum. The next one shows the experimental results, compared to
the predictions. (1 SNU = 10−36 events/target atom and second)
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The solar ν-experiment results (J. Bahcall)

What is the solution for this problem? It can be excluded that the experiments are wrong (different
types; calibration of GALLEX,. . .).

Astrophysical solutions: the easiest explanation would have been that Tc is lower (by ≈ 5%) than
predicted. However, such a solution is not consistent with the experiments any longer. Their collective
analysis shows that most likely the 7Be − νs are missing primarily.

Nuclear explanations: Given the experiments, it could be that the pp-branching is calculated wrongly,
due to unknown features in the reaction rates (resonances). While this does not solve the problem com-
pletely, recent experiments have confirmed the rates as used in energy regions previously not measured.

Particle physics explanations: This is the most likely answer to the problem. Most extensions of the
standard model of particle physics allow or predict the conversion of neutrinos either into other flavours
or sterile right-handed νs. Such neutrinos are not measurable in the present experiments. The standard
explanation now is the MSW (Mikeyev, Smirnov, Wolfenstein) effect, which describes the resonant con-
version of νe into νµ in the present of matter. For a specific parameter range (mass difference and mixing
angle) the experiments can be explained completely.
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2.3.2 Solar Models

A solar model is in fact the final model of a whole sequence of stellar models starting at time t = 0 (pre-ms
or ZAMS) and calculated until t = t�. In the model sequence, certain parameters are free to choose, e.g.
αMLT, Yi. The final model will, most likely deviate from the Sun in terms of observed quantities like L�
and R�. The initial parameters have to be changed accordingly, until finally the Sun is reproduced by
the model.
In the simplest case, αMLT and Yi are the free parameters and L� and R� the quantities to be matched
(M , X/Z and age are fixed).
The dependencies are as follows (they depend on the particular solar model calculation):

∂ lg L

∂αMLT
= 0.02

∂ lg L

∂Yi
= 6.24

∂ lg Teff

∂αMLT
= 0.017 (2.1)

∂ lg Teff

∂Yi
= 0.26

and demonstrate that to first approximation, L depends on Yi, and Teff on αMLT.
Due to the high accuracy of all observations concerning the Sun, the stellar evolution codes and the
physics included have to be of highest quality. In fact, solar models have always been the testing ground
for stellar evolution theory and triggered many improvements, e.g. accurate opacities (OPAL & Opacity
Project) and EOS.
In the last years, it has become evident that diffusion has to be included in the solar models as well. This
implies that Y� �= Yi and Z� �= Zi (if metal diffusion is included as well). Therefore, the correct Zi has
to be iterated as well.
The effect of diffusion on the composition is such that Yi ≈ 0.27, but the present Y� (abundance at
surface and convective envelope) has been reduced to ≈ 0.25. Also, the structure changes slightly (and
the neutrino problem becomes even more serious). The figures showing the structure evolution of the
Sun demonstrate the influence of diffusion.
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2.3.3 Helioseismology

This will be treated in a separate lecture. Suffices to say here that the Sun is ringing like a bell in many
non-radial modes with periods around 5 min. From these the structure can be infered. The results are
in excellent agreement with the theoretical models.
In particular, we learned that the depth of the convective zone is Rcz = 0.713R�, the helium content in
it is Y� = 0.245, the run of sound speed, and the importance of diffusion.
The results also rule out many non-standard solar models invented to solve the neutrino problem (such
as low-Z at center, WIMPS, etc.)

The agreement between solar models (Schlattl, Weiss & Ludwig, 1997) and observa-

tionally infered sound speed and density.
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2.4 Other stars on the main sequence

2.4.1 ZAMS

L ∝ M3µ4 and R ∝ µ
ν−4
ν+3 M

ν−1
ν+3 (from homology).

For the pp-chain (for M ≤ 1.5M�),

R ∝ µ0.15M0.5,

while for the CNO-cycle

R ∝ µ0.6M0.8;

a mean value (keeping composition constant) would be

R ∝ M0.75.

With L ∝ R2T 4
eff it follows that

lg L = 8 lg Teff + const.

for the ZAMS, and the lines of constant R in the HRD are

lg L = 4 lg Teff + const.

The (zero-age) main sequence is the place of stars in core hydrogen burning with mass being the parameter
along it. Radius increases with mass.
For the central values, one finds:

Tc ∝ M
4

ν+3 Pc ∝ M
−2(ν−5)

ν+3 ρc ∝ M
−2(ν−3)

ν+3 Tc ∝ ρ
−2

ν−3
c

Central temperature increases, but density decreases with mass!

2.4.2 Evolution on the main sequence

• low-mass stars evolve as Sun

• M > 1.2M�: develop small convective core, but have no convective envelope; CNO-cycle becomes
important

• the MS-lifetime decreases

• M < 0.4M�: completely convective stars

• at the lowest M non-ideal effects in EOS very important (pressure ionzization, . . .)

Theoretical HRDs with main-sequence evolutionary paths for stars of composition

similar to the Sun. (from KW)
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Low-mass star evolution: Globular
clusters

The lecture will demonstrate, how we learned to understand complex stellar systems. Globular Clusters
are systems of many thousands of stars that have the same age and composition. They provide a
snapshot of a population of stars, with mass being the quantity dictating the differences. In the turn of
the discussion of the various evolutionary stages, the general run of stellar evolution can be illustrated
easily. One of the most important applications of Globular Clusters is the determination of their age,
which appears to be close to that of the universe. Methods and results will be reviewed. Globular Clusters
in many respects connect stellar evolution with cosmology and particle physics. This will be included in
the lecture.

Literature:

• Renzini A., Fusi Pecci F.: Annual Review of Astronomy and Astrophysics, vol. 26, 199 (1988); a
classical review discussing the importance of globular cluster diagrams;

• Iben I., Renzini A.: Physics Reports, vol. 6, 329 (1984); a review discussing some of the classical
stellar evolution problems; suited for those who want to look for unsolved questions

• Stetson P.B., VandenBerg D.A., Bolte M.: Publications of the Astronomical Society of the Pacific,
108, 560 (1996); a very recent review discussing methods of cluster age determinations; not including
the latest development

• Degl’Innocenti S., Salaris, M., Weiss, A.: Astrophys. Journal 479, 665 (1997); our own paper
deriving new and lower ages for the oldest cluster; supplemented by Salaris & Weiss, preprint
astro-ph 9704238 inspecting 25 halo clusters

Note that all principal features of stellar evolution can of course be found in the two textbooks as well.
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3.1 Facts about globular clusters

3.1.1 General facts

Globular clusters (GCs) are groups of 104 · · · 105 stars bound together by their mutual gravitation. The
clusters live mostly in isolation from other stars. They are found in a spherical halo around the galaxies,
but also close to the disk and the bulge of our own Mily-Way. They move on orbits passing through the
disk. Thereby clusters can be perturbed and even destroyed by tidal forces. Only the tightest bound
clusters have survived over the evolution of the Galaxy. Today, the number is about 150. Other galaxies
have similar numbers, but examples with many more clusters are known as well.
Most of the clusters, in particular those in the halo, have low metallicities of Z ≈ 2 · 10−4 · · · 10−3. 1

From CMDs and also spectroscopic observations it appears that all stars within one cluster have almost
exactly the same [Fe/H ]. In particular this can be infered from the narrowness of the so-called Red
Giant Branch (RGB).
From the same argument the suspicion arises that they also have the same age, and the structure arises
just from the different initial mass. The CMD-features are common to all clusters, but they are expressed
to different extends.

            

The CMD of M3 with the different branches indicated (from dLD)

1Obervers express this by [Fe/H] := log(Fe/H)GC − log(Fe/H)�; this is −2 · · · − 0.5 for clusters
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3.1.2 The physical meaning of the CMD-features

• MS (main sequence) — core hydrogen burning

• SGB (sub-giant branch) — transition to shell burning

• RGB (red giant branch) — shell burning; deep convective envelope; degenerate helium core

• He-flash — ignition of helium under degenerate conditions; termination of RGB

• HB (horizontal branch) — core helium burning (non-degenerate) plus hydrogen-shell; L depends
on core mass, and Teff on envelope mass; star distribution unexplained!

• AGB (Asymptotic Giant Branch) — double-shell burning

3.2 Evolution of globular cluster stars

After the core hydrogen burning phase ends, the maximum of the energy production establishes where X
is still high and T is highest, which is somewhere within the formerly “slightly” burning core. The shell
uses up its own fuel and therefore has to move out on a nuclear timescale. The helium core (isothermal,
because εn = 0) contracts and stays at the burning temperature of the shell. Its degeneracy increases
and due to the high density, neutrino emission becomes more and more important, until the cooling by
neutrinos is high enough to invert the temperature! The T -maximum is inside the core, but not at the
center!
The envelope keeps expanding right after the MS. It also becomes cooler until it is convective. Why
stars evolve to Red Giants is an open question and not understood. With the envelope being convective,
the expansion cannot take place by lowering T (Hayashi-line!), but by increasing L. This is the ascent
on the RGB. During this, the convective envelope gets ever deeper, until regions are reached that had
experienced some nuclear burning on the MS. The ashes are mixed to the surface, where Y , and CNO-
abundances change (this is observed!). This phase is called the first dredge-up. After that the approaching
shell is pushing the convective envelope back. At the deepest penetration point a discontinuity in X is
left behind. When the shell passes through this, εn increases suddenly, leading to a vertical loop in the
HRD. Star counts confirm this Thomas-peak.

            

Evolution of a low-mass star in the HRD (from KW; originally Thomas, 1967)
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Interior evolution of the 1.3M� star (from KW; originally Thomas, 1967)

For the RGB stars, analytical (homology) models are possible, which show that L ∝ M7
c , i.e. they predict

a core-mass–luminosity relation, which is confirmed by the theoretical models computed. A typical RG
has L = 1000L�, Teff = 3500 K, R = 100R� and g = 10−4g�.
At some point, the maximum temperature is sufficient for the ignition of helium. Nuclear energy genera-
tion under degenerate conditions is unstable, as can be shown analytically (see Kippenhahn & Weigert).
The reasoning is that for degenerate matter P = P (ρ) and does not depend on T . Energy liberated by
nuclear reactions is therefore put into T , heating the core and therefore (ν > 20) raising εn even more:
a runnaway situation occurs. No expansion occurs, only a smoothing of the Fermi-edge of the electrons,
which finally will lead to a reduction of degeneracy. At that point the core expands, Tmax is at the center
and ordinary central He-burning will commence.
For the core-mass at which the ignition happens, the following relation results from calculations:

Mc = 0.475 − 0.22(Ye − 0.25) − 0.010(3 + lg Z) − 0.025(M − 0.80) + 0.03µ12

(The last term is a postulated neutrino magnetic moment affecting the cooling, which could be shown to
be < 3 · 10−12.)
The timescale during the ignition gets extremely short (days to seconds!), almost dynamical. The helium
luminosity rises to LHe = 106L for a few days and LHe = 104L for 1000 yrs. The whole event is called
core helium flash.
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T -evolution during the core helium-flash (from KW)

            

Evolution of the helium-shell during the flash (from KW, originally from Thomas,

1967)
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RGB and helium flash can be used to . . .

• restrict µ12

• determine distances (if good statistics of stars)

• determine extragalactic distances

• compare clusters differentially

The timescales during the MS and RGB evolution determine the number of stars in each V -bin. This is
the so-called luminosity function used to check theory and to determine the initial mass function (IMF).
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The luminosity function of the cluster M30 and theoretical comparisons

(Degl’Innocenti, Weiss & Leone, A&A 319, 487 (1997))

After the flash, the stars settle on the Horizontal Branch. Again, L depends on core-mass, but Teff on the
total and therefore envelope mass. It is unclear, how the distribution of stars along the HB comes about.
Apparantly, stars must lose different amount of mass on the RGB by stellar winds (0.0 · · · 0.3M�). This
constitutes the so-called second parameter problem.
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3.3 Age determination of globular clusters

We already mentioned that GCs appear to have stars of common age. The CMD can be compared to
theoretical isochrones: these are lines in a CMD of stars of different mass but same age. (Note that for
each mass the evolution up to the RGB has to be calculated!). On the lower main-sequence, the stars
appear to be almost ZAMS-models, and only mass varies; on the RGB, the mass is nearly constant,
because the evolution is so fast.
The point, where the stars leave the MS, after core hydrogen burning has ceased, is called turn-off (TO).
It is the bluest (hottest) point on the main-sequence of GC CMDs. The lower MS, the RGB and the
HB are almost age-idependent, but the TO is not! Therefore, its position is a good age indicator! By
comparison with theoretical isochrones of different age, the one fitting the TO-luminosity will give the
cluster age.

M68

Z=0.0002  Y=0.23

E(B-V)=0.06

(m-M)v=15.26

t=11,12,13 Gyr

The CMD of M68 and isochrones (Degl’Innocenti, Salaris &Weiss, ApJ

479, 665 (1997))

The result is that clusters indeed can be described by isochrones of a single age and one composition,
and that GCs are the oldest objects in the Galaxy. Their age is almost as high as that of the Universe!
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Age determinations are not as simple as might appear. The crucial problem is that the distance to the
clusters are unknown. Only when this is known, MV of the TO is known and can be compared to that
of the models of different age. How can distances be determined?

3.3.1 Distance indicators

1. Some stars on the HB are pulsating with periods of hours (RR Lyr stars). It is known that their
mean brightness depends almost on metallicity alone. If [Fe/H ] is known, the absolute brightness of
them is known, and therefore, by the distance modulus, the distance to the HB and GC. The problem is
that determined MV – [Fe/H ]-relations differ so much that the age derived from them differs by several
billion years (Gyr). Also, not all clusters have RR Lyr stars.

2. Some nearby stars are hardly evolved lower MS stars (subdwarfs). Their distances are known from
parallaxes (recently HIPPARCOS has greatly improved this). Therefore, their luminosity can be deter-
mined. The colours (temperatures) are know as well. By determining the distance modulus between such
stars and stars of same Teff on the cluster MS, the distance is known again. The problems here lie in the
parallax errors, the different metallicities and the photometric errors on the lower MS of clusters.

3.3.2 Distance independent methods

Since RGB and HB are almost age-independent, the brightness difference between HB and TO and/or the
colour difference between RGB and TO are age-dependent and can be used for age determinations. This is
what Salaris & Weiss (1997) have done for a large sample of clusters. The first method (called the vertical
one) is independent of errors concerning the colour (temperature) of the TO. It needs a well-developed
HB, however. It can be used to determine absolute ages. The second method (the horizontal), if used
for absolute ages, depends on the mixing-length parameter and the conversion from Teff to (B −V ). The
uncertainties get small, when clusters of same metallicity are compared to determine their differential
age. The combination of both methods gives best results.

In addition, the HB models needed for the vertical method give distances. These can be compared with
observations to check the method.
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The ages of 25 clusters as a function of metallicity (from Salaris & Weiss, 1997)



Chapter 4

Late evolutionary phases of
intermediate-mass stars

Stars of ≈ 3 − 8M� develop into phases not accessible to low-mass stars like the Sun. These phases are
characterized by thermal instabilities and strong mass loss. Nucleosynthesis of rare elements happens
here as well. Some theoretical and observational aspects will be discussed on a very introductory level.

Literature:

• Iben I., Renzini A.: Annual Review of Astronomy and Astrophysics, vol. 21, 271 (1983); the
standard review explaining in detail the Asymptotic Giant Branch phase;

• Vassiliadis E., Wood P.R.: Astrophys. Journal 413, 641 (1993); presently one of a few standard
articles on evolutionary calculations of AGB stars;

• Weinberger R., Acker A. (eds.): Planetary nebulae, IAU Symp. 155, Kluwer, 1993; proceedings of
the largest meeting in the last few years about planetary nebulae and their connectin to late stages
of stellar evolution
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4.1 General features of the evolution of intermediate-mass stars

As intermediate-mass-stars we consider here stars with 2.5 ≤ M/M� < 8. Their early evolution (main
sequence and RGB) differs from that of low-mass stars (M ≤ 1.3M�). The mass range of 1.3 < M/M� <
2.5 shares properties from both groups and in the literature is sometimes added to the low-mass range,
but sometimes to the intermediate-mass range, depending on point of view. 1

Intermediate-mass stars have the following properties:

• convective core and radiative envelope on the MS (for M > 1.3M�)

• hydrogen-burning via CNO-cycle

• rapid transition from MS to RGB; not observable (so-called Hertzsprung gap in HRD)

• helium core remains non-degenerate

• non-violent ignition of He at center

• double-shell burning phase with degenerate C/O-core

4.1.1 The post-MS evolution

As for low-mass stars, the exhausted core of stars at the end of the MS-phase consists of helium only and
is isothermal, because ε = 0. From the virial theorem applied to the core we get

Eg = −
∫ Mc

0

Gm

r
dm = [4πr3P ]Mc

0 −
∫ Mc

0

3
P

ρ
dm (4.1)

with ∫ Mc

0

3
P

ρ
dm = 2Ei ≈ 3

R
µ

TcMc (4.2)

where we have used the ideal gas equation and the fact that T = Tc. Thus,

3
R
µ

TcMc − Cg
GMc

Rc
− 4πR3

cPc = 0 (4.3)

Here we have replaced Eg by an approximation with a “structure” constant Cg. It follows that
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For fixed Mc, Tc, search the maximum, i.e.
(

∂Pc

∂Rc Mc,Tc
= 0

)
. This yields

Pc =
2187R4

1024π2C3
gG3µ4

T 4
c

M2
c

∝ T 4
c

µ4M2
c

(4.5)

The pressure from the weight of the envelope is (homology) Pe ∝ T 4
c /M2 (Tc is the temperature of the

H-shell as well!) and is independent of Rc. In hydrostatic equilibrium, both pressures should balance. If
the maximum of Pc > Pe, two solutions are possible: one with a larger Rc (non-degenerate core), and
one with a degenerate core. If, however, the maximum of Pc < Pe, no solution in equilibrium is possible
and the core has to contract (which actually happens on a thermal timescale). The core-mass, for which
exactly one solution is possible, and for which the isothermal non-degenerate core can just balance the
weight of the overlying envelope, is called the Schönberg-Chandrasekhar mass and is in terms of relative
core mass q := Mc/M :

qSC = 0.37
(

µe

µc

)2

(4.6)

1All mass limits are to be taken as approximate; they vary by 0.1 · · · 0.3M�, even if a clear definition is made, due to
slightly different numerical results.
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and depends on the ratios of the molecular weights of core and envelope. Its numerical value for solar-
type stars is 0.08. If this value of the isothermal core is execeeded, it has either to become degenerate
(additional pressure source) or non-isothermal (by contraction energy).
This explains the fact that stars of intermediate mass, when having finished the MS-phase, suddenly
start an evolution on a thermal timescale. The core contraction triggers an envelope expansion, with the
node in the H-shell. It is unclear, why this so-called mirror-principle holds. All “explanations” in the
literature about the question, why stars become red giants, are disputed!
After the large expansion of the envelope, it becomes more and more convective until – as for low-mass
stars – the ordinary RGB evolution starts. During this ascent or even earlier (for higher mass) core
temperatures reach the critical 108 K for the ignition of helium burning.

            

Evolution of a 5M� star (from dLD)

Above figure shows the evolutionary track of a 5M� star from the main sequence into helium-shell burning
and the duration of each phase. This is a typical mass and evolutionary scheme for all stars in this mass
range.

4.1.2 The helium-burning phase

Helium ignites in these stars under non-degenerate conditions with ν-losses being unimportant. For
smaller masses, the ignition takes place during the RGB ascent. The stars for a short time retraces its
own track backwards, spends a rather long time at a miimum luminosity and then begins to evolve back.
Higher mass stars (M > 4M�) extend this excursion also to much higher Teff - they loop. These loops
depend on many details of the structure of the stars, and their extend and duration is rather uncertain.
In particular, since the helium burning takes place in a core smaller than the previous H-burning regions,
the H-profile in the star still remembers the end of the MS-phase. When the H-shell eats through this
profile of increasing H-content, the evolution is influenced by it.
After the end of core helium burning, as in the hydrogen phase, a helium-burning shell develops around
an exhausted C/O core and a double-shell phase starts. The star will develop again a deep convective
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envelope and evolve along the Hayashi line. This second ascent of the giant branch is called the Asymptotic
Giant Branch (AGB). During the transition from core- to shell-burning, the H-shell might extinguish.
After the MS-phase and during the first RGB phase, the stars can experience, as their lower-mass coun-
terparts, the first dredge-up. After the core-helium burning, during the second approach to the RGB, a
second dredge-up might occur, when the deep convective zone for a short time penetrates into regions,
where the extinguished H-shell had already converted all hydrogen to helium.

4.2 The AGB-phase

The double-shell phase is one of the most interesting and complicated phases of stellar evolution. It is not
only reached by intermediate mass stars, but in principle by all stars with M > 0.8M�. However, whether
they really develop as far, depends on the mass lost during the RGB phase. (It is unclear, whether the
Sun will ever become an AGB star, as well.) In any case, intermediate-mass stars are the prototype stars
for the discussion of the AGB phase, which is characterized by thermal pulses, nucleosynthesis of rare
elements (s-process) and strong mass-loss.

4.2.1 Thermal pulses

The thermal pulses are rather regular runaway events in the helium shell, which last for a hundred years
and repeat every few thousand years. A pulse is a complicated sequence of changes in both shells, the
layer between them, and the envelope above. An example is shown in the figure below, taken from the
thesis of J. Wagenhuber (1996, MPA).
A pulse starts with the quiet phase A, in which practically all luminosity is produced in the H-shell. Then
the He-shell becomes unstable and produces more and more energy (see panel (c)), although the stellar
values remain constant. At the maximum, convection between the two shells sets in, then expansion,
during which the H-shell extinguishes. Finally, the He-luminosity drops due to the expansion and the
quiet phase resumes. This is a very simplified description of the events shown in the figure. Notice, for
example, the extremely thin shells, the reaction of the envelope convection, the interplay between the
various luminosities.
Why is the helium shell unstable? A simple sequence of arguments is the following:

1. assume the shell expands a little bit, e.g. due to a small T -fluctuation or an increase in Y ;

2. if the shell is very thin, the increase in thickness dD
D is dρ

ρ ;

3. the change of the mean radius of the shell, dr
r , however is almost 0, because the shell is very thin;

4. the pressure in the shell depends (hydrostatic equilibrium) on the pressure exerted from the enve-
lope;

5. due to dr
r � 1 the envelope does not “feel” any change in the gravitational potential, and Pe stays

constant;

6. with dρ
ρ < 0 but d(P ) = 0, for an ideal gas it follows that dT

T > 0, that is, the shell gets even hotter;

7. and the runaway has started and continues until the pressure is changing as well, or the excessive
energy can be carried away fast enough (e.g. by convection)
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The event of a thermal pulse in a 5M� star (Pop. II). The first panel (a) shows

the location of the two shells and the convective regions; the second (b) the stellar

luminosity, the third (c) the luminosity produced in H- and He-shell, (d) Teff and (e)

the stellar radius. The time axis has a varying scale. (from Wagenhuber, thesis 1996)

The thickness of the shell is of the order of 10−4 or less in relative radius and 10−2 in mass. Since
helium-burning has a higher T -dependence (ν ≈ 40), it is always thinner than the H-shell and therefore
gets unstable earlier.
The timescales, as seen in the figure, become extremely short. In some cases dynamical terms can no
longer be neglected. At the same time, the structure gets very complex (large gradients in P and T ).
Both facts lead a high computational effort. Due to the instability nature, numerical instabilities trigger
physical ones and the models tend to refuse to converge. The problem has been solved by Wagenhuber &
Weiss (A&A 286,121 (1994)). Now a complete sequence of many pulses (needing 105 models with 3 · 103

grid points can be calculated in one computational run (about 1 week on a RISC workstation).
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Thermal pulses in a 2.5M� star over the whole AGB

evolution (Wagenhuber & Weiss, 1994)

Since the calculations are so time-consuming and difficult, simple relations for the main quantities of
interest are needed. This is possible. The most important example are core mass - luminosity relations
for L in the quiescent phases. The simplest form is

L/L� = 5.92 · 104(Mc − 0.495) (4.7)

which is asymptotically valid for 0.6 < Mc/M� < 0.9. Asymptotically means that the first few pulses
and nuclear energy generation at the hot bottom of convective envelopes in the more massive AGB stars
are ignored.
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Mc – L relations for three different compositions compared to many calculated ther-

mal pulses (from Wagenhuber 1996)

4.2.2 Mass loss on the AGB

In principle, an AGB-star could evolve until its degenerate core reaches the Chandrasekhar mass of
≈ 1.4M�, where not even electron degeneracy can stop further collapse. This would need hundreds of
pulses. Observations show that the end-products of intermediate-mass star evolution, the White Dwarfs,
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which have been the cores of AGB-stars, have masses of ≈ 0.6M�, depending on total initial mass (0.8M�
as a maximum). This means that AGB stars must lose their envelopes during that phase and only the
cores remain. Further evidence comes from the existence of circumstellar shells and Planetary Nebulae,
which are circumstellar shells illuminated by UB-light from the post-AGB star. The conclusion is that
AGB stars lose most of their envelopes by stellar winds, which at the end of the AGB-phase increases
dramatically; up to 10−4M�/yr (superwind).
The physical mechanism for the wind is not yet completely clear, but the picture emerges that dust forms
in the extended, cool atmospheres, which is then accelerated by radiation pressure and drags along the
gas. Empirical and theoretical mass loss formulae, which are included in the stellar models, all have a
functional form like

Ṁ = η
Lα

T β
effMγ

(4.8)

(α, β, γ > 0), which says that increasing L and decreasing Teff and mass lead to higher mass loss.
Wagenhuber (thesis, 1996) has shown that with theoretical dust-driven winds the termination of the AGB-
phase can be achieved in a self-constistent way leading to good agreement with observations. Previous
work very often used parametrized mass-loss rates calibrated to observations (Vassiliadis & Wood, for
example).

4.3 The post-AGB phase
            

AGB- and post-AGB evolution of a 2M� star. During the AGB, 1.2M� were lost by

an “ordinary” stellar wind; the superwind led to the rapid ejection of 0.2M�, such

that a remnant of 0.6M� was left (from Iben & Renzini 1983)

In the above figure an example evolution is shown that resulted from a parametrized calculation. After
the envelope is lost almost completely, the shells are no longer able to sustain the remaining envelope,
which contracts and heats up. The star begins a horziontal evolution through the HRD with a crossing-
time of a few 105 yrs (depending on mass). At about 30000 K, the UV-flux is high enough to ionize an
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existing circumstellar shell, which re-emits in several forbidden lines (e.g. [OIII] λ5007 Å); such an object
is called a Planetary Nebula.
Later, the shells extinguishes because either the fuel is used up or hot winds have led to the loss of it.
The star then begins the cooling-phase of a White Dwarf, which takes its luminosity from thermal energy
as did the star when it started its life on the pre-main sequence. Stars that lose their envelopes already
on the RGB, evolve into WDs as well. This is the fate of the Sun. Since the cooling-time of WDs gets
longer and longer as they get dimmer, the oldest WDs in the Galaxy are still visible. Determining their
age gives a limit to the age of the Galaxy. In the solar neighbourhood, the oldest WDs are about 10 Gyr
old. The disk of the Galaxy appears to be slightly younger than the globular clusters. In them, only
intrisically bright WDs can be found up to now, which are much younger (3-5 Gyr).

4.4 Nucleosynthesis on the AGB

Possibly the most important aspects of the AGB-stars for the universe is that they are believed to be
the place where many rare earth elements are processed in the s-process nucleosynthesis. The ‘s’ stands
for slow, because it operates via neutron captures, which are relatively slow compared to the β-decays
occuring in these reaction chains. The advantage is that neutrons do not suffer from the Coloumb-wall.
The disadvantage is that one needs a sufficient number of neutrons, which do not occur in the ordinary
H- and He-burning chains.
There are two favourite n-sources,

13C(α, n)16O and 22Ne(α, n)25Mg

called the 13C and 22Ne source.

During the thermal pulses, the outer convective zone may reach layers usually lying below the H-shell.
These layers, He-rich, get mixed with debris from the He-shell, when the intershell convection starts at
the top of a pulse. Therfore, He-burning ashes can reach the surface, in particular carbon, which is
easy to observe. Indeed, stars with too high C-abundances (carbon stars) have been observed all along
the AGB, indicating that this so-called third dredge-up does indeed happen. In the theoretical models,
unfortunately, it occurs rarely, if at all. The second effect of the 3rd dredge-up is that protons from the
H-rich layers will get mixed into the very hot He-shell. They will not be burned to helium, but rather
used for p-captures in C and O in the He-shell:

12C(p, γ)13N(β + ν)13C → (p, γ)14N
(α, n)16O (4.9)

16O(p, γ)17F (β + ν)17O → (p, α)14N
(α, n)20Ne

(4.10)

This process would therefore lead to the 13C source.
Alternatively, the following could happen. The H-shell converts C and O mostly into 14N , which gets
mixed into the He-shell. Then

14N(α, γ)18F (β+ν)18O(α, γ)22Ne(α, n)25Mg (4.11)

The efficiency of all processes and reactions involved depends on pulse-strengths, mixing efficiency and
more details. Parametrized nuclear network calculations have shown that for appropriate neutron-
exposures the solar system s-process abundances can be obtained.
In general, the calculations of the stellar models are more likely to obtain 3rd dredge-up, proton injection,
and s-process, if

• pulse number is high

• Z is low
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• non-standard convection (overshooting, semiconvection) is used

An example for a typical s-process chain is the cadmium, indium, tin chain:

110Cd + n →111 Cd + n . . .115 Cd
e−→ 115In + n → . . .



Chapter 5

Pecularities: Pulsations, Helium
Stars, Abundance Anomalies

The stellar zoo is full of stars not fitting into the general picture developed in the previous sections. Also,
stars do not only evolve on very long timescales, but sometimes vary on dynamical timescales (regular
pulsations). In the final lecture, a relaxed look at those peculiar features which are the salt in the soup
of our daily work in stellar evolution will be taken.

Literature:

• Cox J.P., Theory of Stellar Pulsations, Princeton University Press, 1980; the standard textbook
containing the theory of pulsation;

• Jeffery C.S., Heber U. (eds.): Hydrogen-deficient stars, A.S.P. Conference Series, vol. 96, 1996;
proceedings of the latest workshop of helium and related stars; contains the up-to-date knowledge
about these stars

• Kraft, R.P., Publications of the Astronomical Society of the Pacific, 106, 553 (1994); the standard
review article on abundance anomalies found in globular cluster stars;
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5.1 Pulsating stars

5.1.1 Observational evidence            

A brief visit to the zoo of pulsating stars (from Becker, 1987)

• periodic brightness variations observed all over the HRD

• pulsations are radial and non-radial (as in the Sun)

• periods from hours to years

• connected – but not completely in phase – with temperature (radius) variations

• existence of an instability strip crossing core He-burning loop of intermediate-mass stars, the hori-
zontal branch and the main sequence

• existence of a period-density relation Π
√

ρ̄/ρ̄� = 0.03 · · · 0.12 days

5.1.2 The physical view

The pulsations are dynamical waves of motion through the stellar envelope. Their characteristic time is
the free-fall time τff .
From the virial theorem and the sound-crossing time estimate the observed period-density relation can
be explained; one gets

Π
√

ρ̄ = const. = 2
(

4
3
ΠGρ̄�

)−1/2

≈ 0.04 days (5.1)

During pulsation, mass elements are compressed and expanded. During compression T rises and the
element will lose energy to the surroundings. During expansion, the situations is the other way round. If
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more energy is lost during compression than gained during expanion, the element damps the oscillation.
It is stable. If this applies for most of the envelope or star, any excited pulsation will die again.1

An unstable situation occurs for example, when the element is producing nuclear energy. A rise in T
leads to a large intrinsic heat gain. This is unstable and refered to as the ε-mechanism. Due to this, the
most massive stars become unstable as a whole. However, for most stars, any excitation in the energy
producing regions is easily damped by overlying regions.
The situation becomes also unstable, when during compression the element loses less energy than it would
under adiabatic conditions. This happens, when the opacity gets much higher for higher T . This is called
the κ-mechanism and is the one that drives almost all pulsating stars.
For the classical Kramers opacity, we have κ = CρT−3.5. For a completely ionized gas, T ∝ ρ2/3 and
κ = Cρ−4/3. This means that during compression, κ gets smaller, and the situation is stable. This led
Eddington to the conclusion that pulsations cannot be due to variations in opacity.
He did not have access to opacities that take ionization into account. In the case of partial ionization,
compression leads to an increase in ionization, i.e. ∂ lnT

∂ ln ρ = λ � 1. Thus, in this case, with T ∝ ρλ and
λ ≈ 0, κ ∝ ρ1−3.5λ, which, for λ < 2/7 will lead to an increase in κ upon compression. Whether the
total effect of the κ-variation and that of

(
∂ ln T
∂ ln ρ

)
ad

lead to an unstable situation, depends on the opacity
details.

            

Lines of constant opacity and arrows indicating
(

∂ ln T
∂ ln ρ

)
ad

. (from KW)

In this figure some typical situations are shown: (b) and (d): in both cases, compression leads to a lower
1This is actually the case for all solar oscillations; however, they are permanently excited due to the random motion in

the convective turbulence.
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κ, equivalent to damping. (a) is unstable, because κ rises sharply. However, the star would have only
a very small mass in this region, so that the envelope would not really start to pulsate. (c) is the most
interesting case, since

(
∂ ln T
∂ ln ρ

)
ad

is reduced due to the second ionization of helium and κ increases. If the
stellar envelope has a large enough mass fraction in the ionization region, it will become unstable.

            

Sketch of exciting and unstable regions within a stellar envelope. The abscissa is the

work-integral over mass layers. (from dLD)

Whether a star is stable or not is described by the work integral. It arises from the consideration that a
mass element, while passing through a compression–expansion–cycle, either gains heat or loses it. The
integral over mass describes than whether a whole envelope gains energy. It is then going to pulsate.

            

Sketch of the instability strip and an evolutionary path through it. (from dLD)
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5.1.3 Numerical calculations

• full non-linear calculations are difficult and time-consuming

• standard approach: linear stability analysis; gives period and growing times

• convection usually “frozen in”, i.e. considered not to take part in the pulsation

• results in very good agreement with observed periods and stability strips

• amplitudes theoretically not well understood

• major progress due to new opacities (include Fe-ionization, which is important for hotter stars)

5.1.4 Cepheids and RR Lyr stars

            

Variations in light, colour, radial velocity and radius for Cepheids (from dLD)

Cepheids (after δ Cephei) are the most important pulsating stars. Their pulsation periods are in the
range of 5-10 days and the brightness amplitudes lie between 0.2 and 2 magnitudes. They have been
identified to be Pop. I intermediate-mass stars in core-helium burning loops, driven by the κ-mechanism.
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The instability strip crossing evolutionary paths of intermediate stars (from dLD)

For Cepheids, very early a period-luminosity relation has been found by Henrietta S. Leavitt. This implies
that if the period is known, which is easy, the absolute brightness can be derived. From the apparent
one, the distance can be infered. Presently, one of the Hubble Space Telescope Key Projects is looking for
Cepheids in clusters of galaxies to determine their distance and finally the Hubble constant H0. Since
Cepheids are intrisically bright, they can be observed at large distances.
However, the use of this relation has a long history of errors due to unrecognized dependencies: there
are different types of Cepheids and the metal dependence is not well-known. It is still a focus of active
research to keep the errors as small as necessary.
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The most recent relation for galactic Cepheids is using HIPPARCOS parallaxes (Feast & Catchpole 1997):

〈MV 〉 = −2.82 logΠ − 1.43 (5.2)

(Π in days).

RR Lyr stars are the Pop II equivalent of Cepheids. They are found in globular clusters and serve
as distance indicators. Again, the uncertainties in the period-luminosity relations are still too high (in
particular, the calibration of the zero-point is uncertain; there are no nearby RR Lyr stars). Periods
are between 0.2 and 1 day, and amplitudes of order 0.2 mag. Sources for errors are the existence of
fundamental and first overtone pulsators, and the fact that the stars are in different evolutionary phases,
crossing the instability strip from either side on their looping paths. In practice a relation between mean
brightness and metallicity is used. The one we prefer is that of Walker:

MV (RR) = 0.15[Fe/H ] + 0.73, (5.3)

which translates into a relation for RR Lyr stars on the zero-age HB (where core helium burning just has
started)

MV (RR) = 0.20[Fe/H ] + 0.93, (5.4)

From our theoretical model, we derive, for comparison

MV (RR) = 0.21[Fe/H ] + 0.91, (5.5)
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5.2 Helium stars

Stars with an extremly low hydrogen abundance in the photosphere X < 10−4X� are called helium stars
(except for those, of course, which also lack He).
They appear as

• Wolf-Rayet stars: massive stars near the MS

• extreme He-stars (EHe): hot stars on post-AGB tracks; low mass

• R CrB stars: presumably the predecessors of the EHe stars; Teff ≈ 5000 · · ·12000 K; M ≈ 0.8M�
carbon rich; deep brightness declines

• Hydrogen-deficient carbon stars (HdC): even cooler than the R CrBs, but no declines

• He-rich central stars of planetary nebulae: post-AGB stars

• He-rich White Dwarfs (DB)

• subdwarf-O stars (sdO): located on the extreme blue HB; low mass (≈ 0.4M�)

• type I supernovae

Only for the WR-stars it is rather clear that heavy mass loss has stripped off the H-envelope and let us
see into the former core. For all other stars, the origin of the H-deficiency is unclear. Speculations are

• core He-flash explosions, which lead to a loss of the envelope

• strong winds on the AGB

• special superwind at the end of the AGB

• final thermal pulse during post-AGB evolution using up the thin H-envelope

• binary mergers: in binary systems, mass transfer is easy; it is therefore easy to strip a star off his
H-envelope; later the two stars have to merge, however

5.3 Abundance anomalies

5.3.1 Short overview

The relative abundances of the metals as known from the Sun is a reference for all stars. Every deviation
from it is considered as an anomaly. There are a few exceptions: the total metal abundance and the
abundances of the so-called α-elements (which are those of the α-capture chain starting with oxygen:
O, Ne, Mg, Si, Ca, . . .). These are overabundant relative to the solar metal distribution, whenever the
material a star has been made of, experienced pollution by supernovae of type II, but not type I (example:
the globular cluster stars). It appears now that there are two generic metal mixtures: the solar one (SN
II+I signature) and the α-enhanced one).
In a strict sense, helium stars are anomalous as well, because their paucity in hydrogen is no normal
consequence of stellar evolution. On a less drastic scale we also find stars with helium over- and hydrogen-
underabundance of factors of 2.
An incomplete list of anomalies:

• helium abundance Y ≈ .40 in OB-stars

• nitrogen overabundance in OBN-stars

• carbon underabundance in Red Giants

• O-under- and Na & Al-overabundances in Red Giants
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• Ap stars: He, Mn, Hg, and other elements anomal (MS stars of spectral types B–F (20000 · · ·8000
K)

• Ba-stars: G-type stars with Ba and other s-process elements enhanced

. . . and one of explanations:

• ordinary 1st dredge-up: explains C-underabundances and reduced 12C/13C isotope ratios (CNO-
cylce signature)

• diffusion in stellar winds and magnetic fields (Ap stars)

• pollution by AGB-companions (Ba stars)

• rapid rotation causing partial or almost complete mixing of the whole star (OB helium rich stars;
N-overabundance in massive stars)

• over- and undershooting from convective layers (CN-anomalies)

• turbulent diffusion induced by differential rotation (Red Giant anomlies)

In the following I will concentrate on the last point as an example.

5.3.2 Abundance anomalies in globular cluster Red Giants

In many GCs, bright Red Giants have been investigated for their metal contents. Although the stars of
one cluster overall have a very narrow range of total metallicity, star-to-star variations have been found.
They are:

1. C is underabundant (up to factor 1/30)

2. 12C/13C is underabundant (up to factor 1/10)

3. Na is anti-correlated with O, which can be over- and underabundant (up to factors 3)

4. Mg is underabundant and Al anti-correlates with it

5. and more . . .

It has been shown that all these anomalies arise from H-burning in the CNO- and equivalent cycles
operating at higher (sometimes much higher) T such as the NeNa- and MgAl-cycles. There are two
competing scenarios to explain them: the primordial one claiming that the initial molecular cloud already
had the observed anomalies, and the deep-mixing scenario claiming that the star produced them itself
in the H-shell and that turbulent diffusion, caused by internal differential rotation, mixed them to the
convective envelope where they are immediately transported to the surface.
Both scenarios have arguments in favor: for the deep-mixing scenario the main argument is that C gets
the more underabundant the brighter the star is. The anomaly is therefore coupled to evolution. Standard
stellar evolution in fact predicts this (due to the 1st dredge-up), but to a lesser extend and at higher
luminosities than observed. The primordial scenario is favored by the fact that some anomalies appear
to start already at the turn-off, where no deep convection has set in and diffusive mixing is difficult to
obtain. Second, at least MgAl-cycle anomalies require shell temperatures never reached in RGB-stars.
They could be reached in AGB-stars.
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Abundance anomalies in GC RGB stars: (a) C-anomaly in M92; (b) C-isotope

anomaly in M4, M22 and halo stars; (c) Na-O anti-correlaton in M3, M13 and field

stars. The lines are theoretical solutions of the deep-mixing scenario (from Denis-

senkov & Weiss, A&A 308, 773 (1996))

This figure shows some success of the deep-mixing scenario. However, the deficits are that for different
anomalies, different parameters (penetration depth and diffusive speed) for the turbulent diffusion are
needed and that the MgAl-anomaly can not be explained. Presently, we are working on a combined
scenario, where some anomalies are created in AGB-stars (by the same effect) and others in the RGB-
stars originating from material polluted by these AGB-winds.
But maybe the situation is even more complicated . . .

5.3.3 Concluding thought

Stellar evolution theory has had great success in the past. In principle, we know exactly, how stars live
and operate, even in the interiors, where we cannot observe them directly. The fast-growing field of
spectroscopy will confront us with more and more detailed data that challange our understanding, as the
known anomalies already do. The inclusion of more physical effects – such as diffusion and rotation –
will be necessary, not only for accurate solar models but for all kinds of stars.
One should always remember that almost all fields in astrophysics rely on the results of stellar evolution.
One should not think that we understand stars enough to forget this!



Chapter 6

Appendix: Thermodynamical
Relations

The first law of thermodynamics is

dq = du + Pd(1/ρ).

Assume an equation of state (EOS) of the form ρ = ρ(P, T ) and u = u(ρ, T ) i.e. ignore the dependence
on composition.
Definitions:

v := 1/ρ (6.1)

α :=
(

∂ ln ρ

∂ ln P

)
T

, δ :=
(

∂ ln ρ

∂ ln T

)
P

(6.2)

→ dρ

ρ
= α

dP

P
− δ

dT

T
(6.3)

cP :=
(

dq

dT

)
P

=
(

du

dT

)
P

+ P

(
dv

dT

)
P

(6.4)

cv :=
(

dq

dT

)
v

=
(

du

dT

)
v

(6.5)

du =
(

du

dv

)
T

dv +
(

du

dT

)
v

dT (6.6)

→ ds =
dq

T
=

1
T

[(
∂u

∂v

)
T

+ P

]
dv +

1
T

(
∂u

∂T

)
v

dT (6.7)(
∂u

∂v

)
T

= T

(
∂P

∂T

)
v

− P (6.8)

The last equatin is obtained, when differentiating (7) twice, first w.r.t. ∂T and ∂v and then in reversed
order and using the fact that s is a complete form.
From (6) we get (with u = u(P, T ))

du

dT
=

(
∂u

∂T

)
v

+
(

∂u

∂v

)
T

dv

dT
(6.9)

→
(

∂u

∂T

)
P

=
(

∂u

∂T

)
v

+
(

∂u

∂v

)
T

(
∂v

∂T

)
P

(6.10)

=
(

∂u

∂T

)
v

+
(

∂v

∂T

)
P

[
T

(
∂P

∂T

)
v

− P

]
(6.11)

82



83

where (8) was used. From (4), (5) and (11) we get

cP − cv =
(

∂v

∂T

)
P

(
∂P

∂T

)
v

T

but (
∂P

∂T

)
v

=
Pδ

Tα

and thus

cP − vv =
Pδ2

ρTα
(6.12)

which for an ideal gas reduces to

cP − cv = R/µ

Write

dq = du + Pdv =
(

∂u

∂T

)
v

dT +
[(

∂u

∂v

)
T

+ P

]
dv (6.13)

=
(

∂u

∂T

)
v

dT + T

(
∂P

∂T

)
v

dv (6.14)

= cvdT − T

ρ

(
∂P

∂T

)
v

drho
ρ (6.15)

= cvdT − Pδ

ρα

drho

ρ
(6.16)

= cvdT − Pδ

ρα

(
α

dP

P
− δ

dT

T

)
=
(

cv +
Pδ2

ραT

)
dT − δ

ρ
dP (6.17)

= cP dT − δ

ρ
dP (6.18)

where (5), (9) and (12) were used. The final expression will be used in the structure equation for energy
generation.
Define the adiabatic temperature gradient

∇ad :=
(

∂ ln T

∂ ln P

)
s

(6.19)

=
Pδ

ρcP T
(6.20)

which results from 0 = dq for adiabatic changes.
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